Экстремумы функции трёх переменных
Плюс одно измерение. Рассмотрим функцию трёх переменных , внутреннюю точку её области определения и -окрестность данной точки, которая представляет собой шар с центром в точке радиуса .
Определение: если в некоторой -окрестности точки выполнено неравенство ( – точка -шара, отличная от ), то функция имеет минимум в точке ; если же – то максимум.
Вполне, кстати, понятное и не такое уж абстрактное определение.
Всё очень похоже. Если дифференцируемая функция имеет экстремум в точке , то обязательно выполняются условия . Но с другой стороны, если в какой-либо точке производные 1-го порядка равны нулю, то это ещё не значит, что там есть экстремум.
Алгоритм решения сохраняется прежним:
Найти экстремумы функции
Решение: переключаем передачу на частные производные функции трёх переменных:
Чтобы найти стационарные точки, составим и решим следующую систему:
Аккуратно расположим переменные в обычном порядке и, кроме того, разделим последнее уравнение на 2:
Систему можно решить методом Гаусса, нозачем такие сложности? Из 3-го уравнения выразим и подставим его в первые два уравнения:
Из 1-го уравнения выразим и подставим во 2-е уравнение:
Таким образом, – стационарная точка. Здесь, напоминаю, не помешает подставить найденное решение в каждое уравнение исходной системы и убедиться в выполнении условий .
Проверка достаточного условия экстремума осуществляется несколько по-другому. Сначала нужно найти все частные производные 2-го порядка, вычислить их в точке и составить так называемую матрицу Гессе:
Да не пугайтесь вы так =) Данная матрица является симметричной (или симметрической). Это значит, что её элементы симметричны относительно главной диагонали, на которой в данном случае расположены «однобуквенные» частные производные . Уловили закономерность?
Далее нужно вычислить угловые миноры. Это определители, которые «разрастаются» из левого верхнего угла:
1) Если , то функция достигает минимума в точке .
2) Если (так и только так!), то функция достигает максимума в точке .
3) Если получилось что-то другое и при этом , то – седловая точка. Здесь это уже во многом условное название.
4) Если , то признак не даёт ответа о характере точки .
Внимательные читатели заметили, что эту схему в варианте «два на два» мы использовали и в предыдущем параграфе – только оформление «детское» было. Но не будем отвлекаться.
В нашем примере все производные 2-го порядка равны константам:
а значит, они равны константам и в точке . Составим матрицу Гессе:
и вычислим её угловые миноры:
Вывод: функция достигает максимума в точке .
Для удобства вычислений скопирую функцию:
Аналогичное задание для закрепления материала:
Исследовать функцию на экстремум
Краткое решение и ответ рядом.
Рассмотренный алгоритм исследования распространяется и на функции бОльшего количества переменных. Я бы мог расписать его в общем виде, но заметная часть аудитории просто на дух не переносит общие формулы с нагромождением цифр и индексов. Поэтому разберём ещё случай функции 4 переменных, а дальше – будет понятно.
Чтобы исследовать на экстремум дифференцируемую функцию четырёх аргументов, нужно найти частные производные 1-го порядка и решить систему:
Предположим, что в результате решения найдена стационарная точка . Далее нужно найти частные производные 2-го порядка, вычислить их в точке и составить матрицу Гессе:
после чего вычислить её угловые миноры .
Если все миноры положительны, то в точке – минимум, если знакочередуются в следующем порядке: (и именно в таком!), то в точке – максимум. Если имеет место другой случай, но , то – седловая точка; если же , то признак не даёт ответа о характере точки .
Ну и для совсем продвинутых читателей сообщу, что это есть не что иное, как проверка квадратичной формы полного дифференциала 2-го порядка на знакоопределённостьметодом Сильвестра(для функций 2, 3, 4 и бОльшего количества переменных).
Удачных вам исследований!
На следующих уроках мы познакомимся с условными экстремумами, задачей нахождения минимального и максимального значений функции, а также известнейшим приложением темы – Методом наименьших квадратов.
Как наберётесь сил – приходите ещё! =)
Решения и ответы:
Пример 2: Решение: найдём стационарные точки:
– стационарная точка.
Проверим выполнение достаточного условия экстремума:
, в частности:
, значит, в точке нет экстремума.
Ответ: экстремумы отсутствуют
Пример 3: Решение: найдём стационарные точки:
Из 1-го уравнения выразим: – подставим во 2-е уравнение:
Матрица Гессе
Гессиан функции — симметрическая квадратичная форма описывающая поведение функции во втором порядке.
Для функции f дважды дифференцируемой в точке
(или
). В обоих случаях гессиан — квадратичная форма, заданная на касательном пространстве, не меняющаяся при линейных преобразованиях переменных.
Содержание
Матрица Гессе
Матрица этой квадратичной формы образована вторыми частными производными функции. Если все производные существуют, то
то её вторые частные производные образуют не матрицу, а тензор ранга 3.
История
Понятие введено Гессе (1844) который использовал другое название. Термин «Гессиан» был введён Сильвестром.
См. также
Ссылки
- Кудрявцев Л.Д «Краткий курс математического анализа. Т.2. Дифференциальное и интегральное исчисления функций многих переменных. Гармонический анализ», ФИЗМАТЛИТ, 2002, — 424 с. — ISBN 5-9221-0185-4
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Матрица Гессе» в других словарях:
Гессе матрица — [Hessian matrix] матрица вторых частных производных функций нескольких переменных: Определитель этой матрицы называется гессианом. Характеристика матрицы Гессе (ее отрицательная или положительная определенность и полуопределенность) служит… … Экономико-математический словарь
Гессе матрица — Матрица вторых частных производных функций нескольких переменных: Определитель этой матрицы называется гессианом. Характеристика матрицы Гессе (ее отрицательная или положительная определенность и полуопределенность) служит условием для… … Справочник технического переводчика
Определитель Гессе — Гессиан функции симметрическая квадратичная форма описывающая поведение функции во втором порядке. Для функции f дважды дифференцируемой в точке или где (или … Википедия
Гессиан функции — Гессиан функции симметрическая квадратичная форма[источник?], описывающая поведение функции во втором порядке. Для функции , дважды дифференцируемой в точке или где … Википедия
ОВРАЖНЫХ ФУНКЦИЙ МЕТОДЫ МИНИМИЗАЦИИ — численные методы отыскания минимумов функций многих переменных. Пусть задана ограниченная снизу дважды непрерывно дифференцируемая по своим аргументам функция для к рой известно, что при нек ром векторе ( знак транспонирования) она принимает… … Математическая энциклопедия
Седловая точка — функции z=x2 y2 (обозначена красным) … Википедия
Метод одной касательной — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… … Википедия
Метод Гаусса — Ньютона — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Метод Ньютона-Рафсона — Метод Ньютона (также известный как метод касательных) это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643 1727), под именем… … Википедия
Вычисление матриц Якоби и Гессе
Пусть задана система функций от переменных. Матрицей Якоби или якобианом данной системы функций называется матрица, составленная из частных производных этих функций по всем переменным.
Если в некоторой точке очень сложно или невозможно вычислить частные производные, , то для вычисления матрицы Якоби применяются методы численного дифференцирования.
Вычисление матрицы Гессе
Матрицей Гессе функции переменных называется матрица, составленная из вторых производных функции по всем переменным
Если в некоторой точке очень сложно или невозможно вычислить частные производные, , то для вычисления матрицы Гессе применяются методы численного дифференцирования.
Методы вычисления матрицы Якоби
Прямое вычисление частных производных
Для вычисления матрицы Якоби в заданной необходимо найти частные производные всех функций системы по всем переменным. Для вычисления производной применяются методы вычисления первой производной.
Формула для элемента якобиана при использовании правой разностной производной:
Формула для элемента якобиана при использовании центральной разностной производной:
Вычисление якобиана с использованием правой разностной производной требует вычислять значения функций в точках. Если использовать центральную производную, то нужно находить значения функций в точках. С другой, стороны погрешность правой производной имеет порядок а центральной — . В большинстве случаев вычисление значения функции — это затратная по времени операция, поэтому используется правая разностная производная.
Оценка погрешности метода
Основная проблема при вычислении каждого элемента матрицы Якоби — как правильно выбрать шаг метода . Шаг выбирается независимо для каждого элемента матрицы.
Проанализируем зависимость погрешности метода от величины шага в случае использования правой разностной производной. Для сокращения записи введём обозначения . Остаточный член в соотношении имеет вид . Если , то Если значения и заданы с погрешностями , то погрешность будет содержать ещё одно слагаемое . Таким образом, оценка суммарной погрешности имеет вид . Эта оценка достигает минимума при . При этом . Оценка погрешности имеет один глобальный миниум. Поэтому выбор очень маленького шага не привидёт к росту точности. При величине шага, близкой к погрешность имеет порядок .
Метод Бройдена
Чаще всего вычисление якобиана является одной из подзадач в различных методах оптимизации и решения систем нелинейных уравнений. При решении систем нелинейных уравнений методом Ньютона требуется вычислять якобиан на каждой итерации. Вычисление якобиана требует вычисления функций в точках. Это сложная и затратная по времени операция. Суть метода Бройдена состоит в том, чтобы вычислить якобиан аналитически или с помощью метода конечных разностей на первой итерации, а после этого на каждой итерации обновлять якобиан, не вычисляя значения функций и их производных.
Пусть задана система нелинейных уравнений , где . Тогда якобиан на -ой итерации выражается по формуле
После этого следующее приближение вычисляется по формуле
Методы вычисления матрицы Гессе
Как и матрица Якоби, матрица Гессе может быть вычислена с помощью разностной аппроксимации производных. , где — вектор переменных, а и — единичные вектора. Эта формула требует вычисления значений функции в точках. Погрешность формулы имеет порядок .
Численный эксперимент
В качестве примера рассчитаем с помощью вышеизложенного метода матрицу Гессе функции в точке (1, 1)