Закрашенная и незакрашенная точка
Эта ассоциация поможет легко запомнить, выколотая точка или закрашенная на числовой прямой.
Сравните неравенства, при которых точка заштрихована: x≥a или x≤b и неравенства, в которых точка выколотая: x>a, x или Светлана Иванова, 27 Сен 2012
Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:
— это неравенство вида которое равносильно совокупности строгого неравенства и уравнения:
В переводе на русский язык это значит, что нестрогое неравенство это объединение классического уравнения и строгого неравенства Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю.
Отрезки и интервалы: в чем разница?
Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:
- — это часть прямой, ограниченная двумя точками. Но эти точки не принадлежат интервалу. Интервал обозначается круглыми скобками: и т.д.;
- — это тоже часть прямой, ограниченная двумя точками. Однако эти точки тоже являются частью отрезка. Отрезки обозначаются квадратными скобками: и т.д.
Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок — закрашенными. Например:
На этом рисунке отмечен отрезок и интервал Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки — круглые.
Метод интервалов для нестрогих неравенств
К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками — и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:
Задача. Решите строгое неравенство:
Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:
f ( x ) = ( x − 5)( x + 3)
Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:
Задача. Решите нестрогое неравенство:
Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:
( x − 5)( x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;
Отмечаем полученные корни на координатной оси:
В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:
f ( x ) = ( x − 5)( x + 3)
Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:
Итак, основное отличие строгих и нестрогих неравенств:
- В строгих неравенствах нас не интересуют концы отрезка, поэтому они отмечаются выколотыми точками. Такие точки никогда не входят в ответ, о чем говорят круглые скобки на первом ответе: x ∈ (−∞; −3) ∪ (5; +∞);
- И наоборот, в нестрогих неравенствах концы отрезка входят в ответ. На графике они отмечаются закрашенными точками, а в ответе указываются квадратными скобками: x ∈ (−∞; −3] ∪ [5; +∞).
Вот и вся разница! Просто запомните: в строгих неравенствах точки выколоты, а в нестрогих — закрашены.
Почему бесконечности всегда стоят в круглых скобках
У внимательного читателя наверняка возник вопрос: почему бесконечности отмечаются круглыми скобками даже в нестрогих неравенствах? Например, почему в последней задаче мы пишем
Что ж, это не опечатка. Бесконечность действительно обозначается круглой скобкой, даже если неравенство — нестрогое. Чтобы понять, почему так происходит, достаточно вспомнить определение бесконечности.
— это гипотетическое число, которое больше любого другого числа, участвующего в решении.
Трудность заключается в том, что нельзя работать с бесконечностью напрямую. Мы можем лишь приблизиться к ней, подставляя такие зверские числа, как 1 000 000 и даже 1 000 000 000. Но добраться до самой бесконечности все равно нельзя.
Именно поэтому бесконечность обозначают круглыми скобками. Ведь хотя бесконечность и ограничивает всю числовую прямую, сама она не принадлежит этой прямой.
Ситуация такая же, как с границами интервалов. Рассмотрим все числа из интервала:
Эта запись означает, что число не принадлежит интервалу, однако любое число, которое больше нуля и меньше единицы — принадлежит. В частности, этому интервалу принадлежат следующие числа:
Попробуем отметить эти числа на координатной прямой. Поскольку каждое следующее число вдвое меньше предыдущего, нам придется несколько раз менять масштаб. Получим вроде этого:
Что дает нам этот график? Оказывается, при достаточно крупном масштабе можно отметить любое число, сколь угодно близкое к нулю. При этом сам ноль никуда не денется — он остается недостижимой границей. Именно это и подразумевается, когда речь заходит о концах интервала.
То же самое происходит и с бесконечностью. Разница лишь в том, что масштаб надо не увеличивать, а уменьшать:
Мы можем сколь угодно долго идти к бесконечности, но так и не достигнем ее. Вот почему бесконечности обозначают круглыми скобками, подобно границам интервала.
Примеры решения неравенств
В заключение кратко разберем два нестрогих неравенства. И если в первой задаче еще есть пояснения, то вторая задача будет оформлена именно так, как и надо оформлять настоящее решение.
Как обычно, приравниваем все к нулю:
( x + 8)( x − 3) = 0;
x + 8 = 0 ⇒ x = −8;
x − 3 = 0 ⇒ x = 3.
Теперь рассматриваем функцию, которая находится в левой части неравенства:
f ( x ) = ( x + 8)( x − 3)
Подставим в эту функцию бесконечность — получим выражение вида:
Чертим координатную ось, отмечаем корни и расставляем знаки:
Поскольку мы решаем неравенство или, что то же самое, осталось записать ответ:
x (12 − 2 x )(3 x + 9) ≥ 0
x (12 − 2 x )(3 x + 9) = 0;
x = 0;
12 − 2 x = 0 ⇒ 2 x = 12 ⇒ x = 6;
3 x + 9 = 0 ⇒ 3 x = −9 ⇒ x = −3.
x ≥ 6 ⇒ f ( x ) = x (12 − 2 x )(3 x + 9) → (+) · (−) · (+) = (−) x ∈ (−∞ −3] ∪ [0; 6].
Решение неравенств
Метод интервалов
Перенос знаков
Выбор точек
Система и совокупность
Точка знакопостоянства
Что нельзя делать в неравенстве, даже под пытками:
1) Домножать на знаменатель.
2) Умножать/делить на отрицательное число, не меняя знак.
3) Убирать бездумно логарифм или основание.
Начнем с простого:
Линейные уравнения решаются обычным переносом. Икс в одной части оставим, а числа перенесем в другую:
А само значение −4 нам подходит?
Нет, поэтому ставим круглые скобочки ()
Разберемся со скобками:
Когда мы включаем точку (корень числителя), или стоят знаки нестрогие ( ≥, ≤ ), ставим «[ ]» — квадратные скобки. Если не включаем (корень знаменателя), или знак строгий (>,
Если же возьмем пример, где придется делить или умножать на отрицательное число, то знак поменяется:
Ответ: x ∈ ( 0; +oo).
Следующий пример уже с дробью:
Приравняем числитель к нулю и скажем, что знаменатель не равен нулю:
к.ч. (корни числителя)
к.з. (корни знаменателя)
Расставляем корни числителя и знаменателя на одной прямой (сколько решаем неравенств, столько же чертим прямых). Попробуем подставить х = 0, чтобы определить знаки:
Там, где «0» (перед двойкой), ставим знак «−», а дальше знаки чередуем:
Из-за того, что знаком неравенства был «≥», нам подходят промежутки со знаком «+» и закрашенная точка:
Когда мы включаем точку (корень числителя), или стоят знаки (≥, ≤), ставим «[ ]» — квадратные скобки. Если не включаем (корень знаменателя), или знак строгий (>,
Данный пример можно решить по-другому. Подумаем, когда дробь больше нуля? Конечно, когда числитель и знаменатель — положительные значения или когда оба отрицательные. Поэтому данное неравенство можно разбить на две системы в совокупности:
Отметим на прямой решение каждого неравенства.
Решением совокупности «[» является тот участок, который включен хотя бы в одно неравенство.
Мой любимый пример:
Покажу мастер-класс, как делать не надо. Дома не повторять!
А теперь через метод интервалов разберемся, как сделать правильно:
Там, где ноль, ставим знак «−», рисуем прямую и отмечаем корни каждой скобки. А дальше чередуем:
В данном неравенстве знак меньше, поэтому записываем в ответ промежуток, где знак «−».
Перейдем к квадратному уравнению:
Разложим на множители и подставим x = 10, чтобы определить знак:
Нам требуются положительные значения:
Второй способ разложить на множители:
Ответ: x ∈ (−oo; −1) ∪ (5; +oo).
А теперь простой, но крайне показательный пример:
Убирать квадрат ни в коем случае нельзя. Простенький контрпример:
Надеюсь, убедил. Вместо знака больше поставим знак равно и попробуем решить методом интервалов:
Если корень повторяется четное количество раз, то в этой точке знак меняться не будет. Отмечать будем такую точку восклицательным знаком (а внутри него ±, чуть ниже объясню, зачем это).
В данном неравенстве знак больше, тогда отметим те промежутки, где стоит знак «+».
Только точка «0» не подходит, 0 > 0 — неверно!
Ответ: x ∈ R <0>или x ∈ ( − oo; 0) ∪ (0; +oo).
Переходим на новый уровень:
Все говорят, что домножать на знаменатель нельзя, а я говорю, что буду! (joke)
По методу координат найдем корни числителя и знаменателя:
Отметим все корни на одной прямой (сколько неравенств, столько же и прямых). Ноль — корень четной кратности, над ним рисуем восклицательный знак! Если это корень числителя, то точка будет закрашена, если знаменателя — выколота (на ноль делить нельзя).
Требуется найти промежутки, где выражение больше или равно нулю. Нам подойдут все «промежутки», где знак плюс. Для этого подставим значение x = 1 и с промежутка [0; 3] начнем расставлять знаки. Там же находится единица.
Вот для чего ставят в восклицательном знаке ±: чтобы не потерять отдельные точки, в данном случае 0.
Ответ: (−oo; − 6) ∪ <0>∪ [ 3; +oo).
По той же схеме корни числителя и знаменателя:
Определим знак при x = 10 и расставим знаки с промежутка, где присутствует 10:
Все точки от − 2 закрашены, значит эти промежутки можно объединить в один.
Точка x = 3 встречается 3 раза (2 раза в числителе и 1 раз в знаменателе), знак через нее меняться будет! А также эта точка будет выколота, проверь это, подставив в уравнение x = 3. На ноль же делить нельзя?
Узнать ещё
Эта ассоциация поможет легко запомнить, выколотая точка или закрашенная на числовой прямой.
Сравните неравенства, при которых точка заштрихована: x≥a или x≤b и неравенства, в которых точка выколотая: x>a, x<b. В первом случае в самом знаке неравенства есть прямая подсказка, что точку надо заштриховать, уже и штриховать начали, первый штрих сделали: ≥ или ≤. Поэтому и на чертеже на числовой прямой в таких неравенствах — заштрихованная точка:
А в знаках > или < штриха дополнительного нет, значит, и закрашивать точку не надо. Получилась выколотая точка.
С3 ГИА – построение графиков функций.
Для того, чтобы хорошо решать это задание, нужно быть знакомым с построением различных графиков функций, в том числе содержащих модуль. Предлагаю тем, кто неуверенно себя чувствует при решении таких заданий, перейти по ссылкам и изучить (или повторить) данные разделы. Задание С3 связано как с исследованием расположения корней квадратного трехчлена, так и с определением области определения функции, и области ее значений. На конкретных примерах мы попробуем научиться решать различные типы таких заданий.
Задача 1. Построить график функции и определить, при каких значениях
график функции
имеет с графиком 1 общую точку. Построить все такие прямые.
Задача о касательных к параболе
Графиком предложенной функции является парабола, ветви которой направлены вверх и вершина, которую подняли вверх на 4 единицы, лежит на оси ординат. Ее координаты (0;4). Второй график – это прямая, проходящая через начало координат, причем ее наклон может меняться (его определяет коэффициент ). Такая прямая только в одном случае имеет с параболой одну общую точку – если является касательной. Причем, поскольку данная парабола симметрична относительно оси ординат, то к ней можно провести две касательных – с точками касания в первом и третьем квадрантах: Чтобы определить, в какой точке прямая коснется параболы, нужно приравнять обе функции:
Поскольку точка касания – единственная общая точка данных графиков, то дискриминант данного уравнения равен нулю: Откуда
и
и решить это уравнение:
Тогда касание произойдет в точке
и симметричной ей точке
.
Задача 2. Построить график функции график функции
имеет с графиком три или более общие точки.
График, который подвергнется преобразованиям
Строить этот график будем поэтапно: сначала построим график , затем – график функции
“Опрокидываем” преобразованный график
Осталось выяснить, в каком же случае прямая – а это прямая, параллельная оси абсцисс – будет иметь три (или же более) общие точки с графиком построенной нами функции. Прямая показана на рисунке зеленым цветом. Видно, что ниже указанного положения прямая будет иметь только две общие точки с графиком. Если
, то прямая имеет три точки с графиком – пересекает две его ветви и касается вершины. Выше прямая будет иметь четыре точки пересечения с графиком, однако при
точек пересечения уже снова две. Значит, ответ надо записать так:
[-1;0)
Задача 3. Построить график функции график функции
имеет с ним три и более общие точки.
Также построим график в два этапа: саму параболу (координаты ее вершины (-1;-9)), затем отразим всю часть, лежащую ниже оси х, вверх: Тогда три и более (а именно – четыре) общих точки графики будут иметь при
(0;9]
Задача 4. Построить график функции и определить, при каких значениях
график функции
имеет с ним 2 общие точки.
Из условия ясно, что такой график состоит из двух кусочков. Один из них – прямая, второй – парабола. Первый существует в точке 1 и левее ее, второй – правее этой точки. Нарисуем эти графики:
Координаты вершины параболы:
Красным показаны прямые и
– именно они, и только они, имеют две общие точки с построенным графиком. Ответ:
,
.
Задача 5. Построить график функции график функции
не имеет с графиком общих точек.
Давайте сначала попробуем упростить данное выражение, кроме того, нужно, безусловно, определить область допустимых значений данной функции. ОДЗ: . Теперь попробуем упростить данное выражение:
Определение коэффициента наклона касательной
Полученная функция – квадратичная, ее графиком является парабола. Данная парабола симметрична относительно оси y, ее вершина имеет координаты (0; 25). Необходимо заметить, что точка с координатами (1; 26) – выколотая точка (по ОДЗ). Тогда прямая, проходящая через начало координат – а именно таким будет график функции , не будет иметь с параболой общих точек в трех случаях: если коэффициент
меньше, чем у касательной, расположенной справа, или он больше, чем у касательной, расположенной слева, или искомая прямая проходит прямо через выколотую точку. Наверное, проще найти каков этот коэффициент именно в третьем случае: так как прямая проходит через начало координат, достаточно подставить координаты нашей выколотой точки в уравнение прямой и найти
:
, откуда
. Проверим, не будет ли такая прямая иметь общих точек с параболой. Приравняем
. По сумме коэффициентов это уравнение имеет корень 1, но и второй корень – 25, поэтому такая прямая будет иметь еще одну точку пересечения с параболой. В ответ эту прямую мы не включим. Теперь определим коэффициент наклона касательных, для этого приравняем оба уравнения:
, и найдем дискриминант, который должен быть равен нулю при наличии единственной общей точки у двух этих графиков функций:
Откуда
и
и решить это уравнение:
Тогда касание произойдет в точке
и симметричной ей точке
. Ответ:
,
.
Задача 6. Построить график функции он не имеет общих точек с графиком функции
.
Гипербола с выколотой точкой
Определим ОДЗ функции: ,
. (Для того, чтобы определить ОДЗ, приравняли знаменатель к нулю и решили данное уравнение). Теперь упростим выражение:
– выколотая точка. В точке
гипербола не существует, оси координат – ее асимптоты (одна из них войдет в ответ). Тогда, если прямая
пройдет через выколотую точку, графики не будут иметь общих точек. Найдем
: для этого определим ординату выколотой точки:
: Ответ:
и
.
Задача 7. Построить график функции график функции
имеет с графиком 1 общую точку.
Подбор коэффициента наклона прямой
Определим ОДЗ функции: ,
. (Для того, чтобы определить ОДЗ, приравняли знаменатель к нулю и решили данное уравнение). Теперь упростим выражение:
– выколота. В точке
гипербола не существует, оси координат – ее асимптоты. Тогда, если прямая
пройдет через выколотую точку, графики будут иметь одну общую точку. Найдем
: для этого подставим в уравнение прямой абсциссу и ординату выколотой точки:
,
: Ответ:
Задача 8. Построить график функции график функции
имеет с ним 2 общие точки.
Построение функции с модулем
Эта функция – функция типа , то график
коснется обеих вершинок нашей “дублированной” параболы, то есть
– один из ответов. Также, если
пересечет обе ветви параболы, то есть все
нас устраивают. Ответ:
,
.
Задача 9. Построить график функции график функции
не имеет с ним общих точек.
Кубическая парабола с выколотой точкой
Определим ОДЗ исходной функции: . Теперь можно упростить выражение:
пройдет именно через эту точку, она не будет иметь общих точек с полученным нами графиком. Ответ: с=4.
Задача 10. Построить график функции график функции
имеет с ним одну общую точку.
Для того, чтобы построить данный график, необходимо раскрыть модули. С этой целью приравняем подмодульное выражение к нулю, чтобы узнать, в какой точке оно меняет знак:
и
Нанесем эти точки на числовую прямую и расставим знаки:
У нас получились три интервала, на каждом из которых можно теперь раскрыть модули: 1.
2.
3.
Тогда наша функция – кусочно-линейная:
.
Она выглядит так:
Зеленым цветом показано одно из возможных положений прямой . При таком расположении прямой
, и может расти бесконечно. Заметим, что крайнее положение прямой – при k=1. При таком коэффициенте наклона она параллельна правой и левой частям графика, и имеет с ним одну точку пересечения – точку (0;0). Точно так же коэффициент наклона может быть и отрицательным. При этом коэффициент k=-1 – не войдет в ответ, так как в этом случае функция
будет иметь общий отрезок с кусочно-линейной функцией, что не соответствует требованиям задачи. Таким образом,
Ответ: вершины парабол
и
расположены по одну сторону от оси х?
Обратим внимание на то, что у двух данных парабол ветви направлены в разные стороны: у первой старший коэффициент отрицателен, а у второй – положителен. Поэтому вершины будут лежать по одну сторону от оси, если одна из них будет иметь точки пересечения с осью х, а другая – нет. Иными словами, дискриминант одного квадратного уравнения должен быть положителен, а другого – отрицателен. Это приводит нас к двум системам неравенств:
Дискриминант и наличие пересечений параболы с осью х
.
Или же наоборот: . Эти два случая изображены на рисунке:
Определим дискриминанты обоих квадратных уравнений:
Тогда имеем систему неравенств:
– решений нет, так как квадрат числа – неотрицателен, и сумма квадрата числа с положительным числом не может быть меньше ноля.
– в этой системе второе неравенство всегда соблюдается, решение первого –
,
,
Мы рассмотрели один способ решения – с использованием дискриминанта. Есть еще один способ решения такого задания – с помощью координат вершины параболы. Решим последнюю задачу вторым способом.
Нам потребуется определить координаты вершин обеих парабол:
1. 2m)^2+4m*2m-m=4m^2-m» />
2. m)^2-2m^2-2=-m^2-2″ />
Ординаты вершин должны иметь один знак по условию, тогда имеем систему неравенств:
– вторая система решений не имеет, а именно, нет решений у второго неравенства, поэтому решим первую. Второе неравенство первой системы справедливо всегда, осталось решить неравенство:
Решение этого неравенства и есть ответ задачи: