Как узнать размерность матрицы в python
Перейти к содержимому

Как узнать размерность матрицы в python

NumPy: матрицы и операции над ними

В этом ноутбуке из сторонних библиотек нам понадобится только NumPy. Для удобства импортируем ее под более коротким именем:

1. Создание матриц

Приведем несколько способов создания матриц в NumPy.

Самый простой способ — с помощью функции numpy.array(list, dtype=None, . ).

В качестве первого аргумента ей надо передать итерируемый объект, элементами которого являются другие итерируемые объекты одинаковой длины и содержащие данные одинакового типа.

Второй аргумент является опциональным и определяет тип данных матрицы. Его можно не задавать, тогда тип данных будет определен из типа элементов первого аргумента. При задании этого параметра будет произведена попытка приведения типов.

Например, матрицу из списка списков целых чисел можно создать следующим образом:

Второй способ создания — с помощью встроенных функций numpy.eye(N, M=None, . ), numpy.zeros(shape, . ), numpy.ones(shape, . ).

Первая функция создает единичную матрицу размера N×M ; если M не задан, то M = N .

Вторая и третья функции создают матрицы, состоящие целиком из нулей или единиц соответственно. В качестве первого аргумента необходимо задать размерность массива — кортеж целых чисел. В двумерном случае это набор из двух чисел: количество строк и столбцов матрицы.

Примеры:

Обратите внимание: размерность массива задается не двумя аргументами функции, а одним — кортежем!

Вот так — np.ones(7, 5) — создать массив не получится, так как функции в качестве параметра shape передается 7, а не кортеж (7, 5).

И, наконец, третий способ — с помощью функции numpy.arange([start, ]stop, [step, ], . ), которая создает одномерный массив последовательных чисел из промежутка [start, stop) с заданным шагом step, и метода array.reshape(shape).

Параметр shape, как и в предыдущем примере, задает размерность матрицы (кортеж чисел). Логика работы метода ясна из следующего примера:

Более подробно о том, как создавать массивы в NumPy, см. документацию.

2. Индексирование

Для получения элементов матрицы можно использовать несколько способов. Рассмотрим самые простые из них.

Для удобства напомним, как выглядит матрица d:

Элемент на пересечении строки i и столбца j можно получить с помощью выражения array[i, j].

Обратите внимание: строки и столбцы нумеруются с нуля!

Из матрицы можно получать целые строки или столбцы с помощью выражений array[i, :] или array[:, j] соответственно:

Еще один способ получения элементов — с помощью выражения array[list1, list2], где list1, list2 — некоторые списки целых чисел. При такой адресации одновременно просматриваются оба списка и возвращаются элементы матрицы с соответствующими координатами. Следующий пример более понятно объясняет механизм работы такого индексирования:

Примеры использования слайсинга:

Более подробно о различных способах индексирования в массивах см. документацию.

3. Векторы, вектор-строки и вектор-столбцы

Следующие два способа задания массива кажутся одинаковыми:

Однако, на самом деле, это задание одномерного массива (то есть вектора) и двумерного массива:

Обратите внимание: вектор (одномерный массив) и вектор-столбец или вектор-строка (двумерные массивы) являются различными объектами в NumPy, хотя математически задают один и тот же объект. В случае одномерного массива кортеж shape состоит из одного числа и имеет вид (n,), где n — длина вектора. В случае двумерных векторов в shape присутствует еще одна размерность, равная единице.

В большинстве случаев неважно, какое представление использовать, потому что часто срабатывает приведение типов. Но некоторые операции не работают для одномерных массивов. Например, транспонирование (о нем пойдет речь ниже):

4. Datatypes

Все элементы в массиве numpy принадлежат одному типу. В этом плане массивы ближе к C, чем к привычным вам листам питона. Numpy имеет множество встренных типов, подходящих для решения большинства задач.

5. Математические операции

К массивам (матрицам) можно применять известные вам математические операции. Следут понимать, что при этом у элементов должны быть схожие размерности. Поведение в случае не совпадения размерностей хорошо описанно в документации numpy.

6. Умножение матриц и столбцов

Напоминание теории. Операция умножения определена для двух матриц, таких что число столбцов первой равно числу строк второй.

Пусть матрицы A и B таковы, что A ∈ ℝ n×k и B ∈ ℝ k×m . Произведением матриц A и B называется матрица C , такая что cij = ∑ k r = 1 airbrj , где cij — элемент матрицы C , стоящий на пересечении строки с номером i и столбца с номером j .

В NumPy произведение матриц вычисляется с помощью функции numpy.dot(a, b, . ) или с помощью метода array1.dot(array2), где array1 и array2 — перемножаемые матрицы.

Матрицы в NumPy можно умножать и на векторы:

Обратите внимание: операция * производит над матрицами покоординатное умножение, а не матричное!

Более подробно о матричном умножении в NumPy см. документацию.

7. Объединение массивов

Массивы можно Объединенять. Есть горизонтальное и вертикальное объединение.

Массивы можно переформировать при помощи метода, который задает новый многомерный массив. Следуя следующему примеру, мы переформатируем одномерный массив из десяти элементов во двумерный массив, состоящий из пяти строк и двух столбцов:

Задания: (Блок 1)

Задание 1:

Решите без использования циклов средставми NumPy (каждый пункт решается в 1-2 строчки)

  1. Создайте вектор с элементами от 12 до 42
  2. Создайте вектор из нулей длины 12, но его пятый елемент должен быть равен 1
  3. Создайте матрицу (3, 3), заполненую от 0 до 8
  4. Найдите все положительные числа в np.array([1,2,0,0,4,0])
  5. Умножьте матрицу размерности (5, 3) на (3, 2)
  6. Создайте матрицу (10, 10) так, чтобы на границе были 0, а внтури 1
  7. Создайте рандомный вектор и отсортируйте его
  8. Каков эквивалент функции enumerate для numpy массивов?
  9. *Создайте рандомный вектор и выполните нормализацию столбцов (из каждого столбца вычесть среднее этого столбца, из каждого столбца вычесть sd этого столбца)
  10. *Для заданного числа найдите ближайший к нему элемент в векторе
  11. *Найдите N наибольших значений в векторе
Задание 2:

8. Транспонирование матриц

Напоминание теории. Транспонированной матрицей A T называется матрица, полученная из исходной матрицы A заменой строк на столбцы. Формально: элементы матрицы A T определяются как a T ij = aji , где a T ij — элемент матрицы A T , стоящий на пересечении строки с номером i и столбца с номером j .

В NumPy транспонированная матрица вычисляется с помощью функции numpy.transpose() или с помощью метода array.T, где array — нужный двумерный массив.

В следующих разделах активно используется модуль numpy.linalg, реализующий некоторые приложения линейной алгебры. Более подробно о функциях, описанных ниже, и различных других функциях этого модуля можно посмотреть в его документации.

9. Определитель матрицы

Напоминание теории. Для квадратных матриц существует понятие определителя.

Пусть A — квадратная матрица. Определителем (или детерминантом) матрицы A ∈ ℝ n×n назовем число

где α1, α2, …, αn — перестановка чисел от 1 до n , N(α1, α2, …, αn) — число инверсий в перестановке, суммирование ведется по всем возможным перестановкам длины n .

Не стоит расстраиваться, если это определение понятно не до конца — в дальнейшем в таком виде оно не понадобится.

Например, для матрицы размера 2×2 получается:

Вычисление определителя матрицы по определению требует порядка n! операций, поэтому разработаны методы, которые позволяют вычислять его быстро и эффективно.

В NumPy определитель матрицы вычисляется с помощью функции numpy.linalg.det(a), где a — исходная матрица.

Рассмотрим одно интересное свойство определителя. Пусть у нас есть параллелограмм с углами в точках (0, 0), (c, d), (a + c, b + d), (a, b) (углы даны в порядке обхода по часовой стрелке). Тогда площадь этого параллелограмма можно вычислить как модуль определителя матрицы ⎛ ⎜ ⎝ a c b d ⎞ ⎟ ⎠ . Похожим образом можно выразить и объем параллелепипеда через определитель матрицы размера 3×3 .

10. Ранг матрицы

Напоминание теории. Рангом матрицы A называется максимальное число линейно независимых строк (столбцов) этой матрицы.

В NumPy ранг матрицы вычисляется с помощью функции numpy.linalg.matrix_rank(M, tol=None), где M — матрица, tol — параметр, отвечающий за некоторую точность вычисления. В простом случае можно его не задавать, и функция сама определит подходящее значение этого параметра.

С помощью вычисления ранга матрицы можно проверять линейную независимость системы векторов.

Допустим, у нас есть несколько векторов. Составим из них матрицу, где наши векторы будут являться строками. Понятно, что векторы линейно независимы тогда и только тогда, когда ранг полученной матрицы совпадает с числом векторов. Приведем пример:

11. Системы линейных уравнений

Напоминание теории. Системой линейных алгебраических уравнений называется система вида Ax = b , где A ∈ ℝ n×m , x ∈ ℝ m×1 , b ∈ ℝ n×1 . В случае квадратной невырожденной матрицы A решение системы единственно.

В NumPy решение такой системы можно найти с помощью функции numpy.linalg.solve(a, b), где первый аргумент — матрица A , второй — столбец b .

Убедимся, что вектор x действительно является решением системы:

Бывают случаи, когда решение системы не существует. Но хотелось бы все равно “решить” такую систему. Логичным кажется искать такой вектор x , который минимизирует выражение ‖ Axb ‖ 2 — так мы приблизим выражение Ax к b .

В NumPy такое псевдорешение можно искать с помощью функции numpy.linalg.lstsq(a, b, . ), где первые два аргумента такие же, как и для функции numpy.linalg.solve(). Помимо решения функция возвращает еще три значения, которые нам сейчас не понадобятся.

12. Обращение матриц

Напоминание теории. Для квадратных невырожденных матриц определено понятие обратной матрицы.

Пусть A — квадратная невырожденная матрица. Матрица A − 1 называется обратной матрицей к A , если

где I — единичная матрица.

В NumPy обратные матрицы вычисляются с помощью функции numpy.linalg.inv(a), где a — исходная матрица.

13. Собственные числа и собственные вектора матрицы

Напоминание теории. Для квадратных матриц определены понятия собственного вектора и собственного числа.

Пусть A — квадратная матрица и A ∈ ℝ n×n . Собственным вектором матрицы A называется такой ненулевой вектор x ∈ ℝ n , что для некоторого λ ∈ ℝ выполняется равенство Ax = λx . При этом λ называется собственным числом матрицы A . Собственные числа и собственные векторы матрицы играют важную роль в теории линейной алгебры и ее практических приложениях.

В NumPy собственные числа и собственные векторы матрицы вычисляются с помощью функции numpy.linalg.eig(a), где a — исходная матрица. В качестве результата эта функция выдает одномерный массив w собственных чисел и двумерный массив v, в котором по столбцам записаны собственные вектора, так что вектор v[:, i] соотвествует собственному числу w[i].

Обратите внимание: у вещественной матрицы собственные значения или собственные векторы могут быть комплексными.

14. Расстояния между векторами

Вспомним некоторые нормы, которые можно ввести в пространстве ℝ n , и рассмотрим, с помощью каких библиотек и функций их можно вычислять в NumPy.

p-норма

p-норма (норма Гёльдера) для вектора x = (x1, …, xn) ∈ ℝ n вычисляется по формуле:

В частных случаях при: * p = 1 получаем 1 норму * p = 2 получаем 2 норму

Далее нам понабится модуль numpy.linalg, реализующий некоторые приложения линейной алгебры. Для вычисления различных норм мы используем функцию numpy.linalg.norm(x, ord=None, . ), где x — исходный вектор, ord — параметр, определяющий норму (мы рассмотрим два варианта его значений — 1 и 2). Импортируем эту функцию:

1 норма

1 норма (также известная как манхэттенское расстояние) для вектора x = (x1, …, xn) ∈ ℝ n вычисляется по формуле:

Ей в функции numpy.linalg.norm(x, ord=None, . ) соответствует параметр ord=1.

2 норма

2 норма (также известная как евклидова норма) для вектора x = (x1, …, xn) ∈ ℝ n вычисляется по формуле:

Ей в функции numpy.linalg.norm(x, ord=None, . ) соответствует параметр ord=2.

Более подробно о том, какие еще нормы (в том числе матричные) можно вычислить, см. документацию.

15. Расстояния между векторами

Для двух векторов x = (x1, …, xn) ∈ ℝ n и y = (y1, …, yn) ∈ ℝ n 1 и 2 раccтояния вычисляются по следующим формулам соответственно:

16. Скалярное произведение и угол между векторами

Скалярное произведение в пространстве ℝ n для двух векторов x = (x1, …, xn) и y = (y1, …, yn) определяется как:

Длиной вектора x = (x1, …, xn) ∈ ℝ n называется квадратный корень из скалярного произведения, то есть длина равна евклидовой норме вектора:

Теперь, когда мы знаем расстояние между двумя ненулевыми векторами и их длины, мы можем вычислить угол между ними через скалярное произведение:

где α ∈ [0, π] — угол между векторами x и y .

17. Комплексные числа в питоне

Напоминание теории. Комплексными числами называются числа вида x + iy , где x и y — вещественные числа, а i — мнимая единица (величина, для которой выполняется равенство i 2 = − 1 ). Множество всех комплексных чисел обозначается буквой ℂ (подробнее про комплексные числа см. википедию).

В питоне комплескные числа можно задать следующим образом (j обозначает мнимую единицу):

С комплексными числами в питоне можно производить базовые арифметические операции так же, как и с вещественными числами:

Задания: (Блок 2)

Задание 3:

Рассмотрим сложную математическую функцию на отрезке [1, 15]:

f(x) = sin(x / 5) * exp(x / 10) + 5 * exp(-x / 2)

images/lab14/func.png

Она может описывать, например, зависимость оценок, которые выставляют определенному сорту вина эксперты, в зависимости от возраста этого вина. Мы хотим приблизить сложную зависимость с помощью функции из определенного семейства. В этом задании мы будем приближать указанную функцию с помощью многочленов.

Как известно, многочлен степени n (то есть w0 + w1x + w2x 2 + … + wnx n ) однозначно определяется любыми n + 1 различными точками, через которые он проходит. Это значит, что его коэффициенты w0 , … wn можно определить из следующей системы линейных уравнений:

images/lab14/eqs.png

где через x1, . xn, xn + 1 обозначены точки, через которые проходит многочлен, а через f(x1), . f(xn), f(xn + 1) — значения, которые он должен принимать в этих точках.

Воспользуемся описанным свойством, и будем находить приближение функции многочленом, решая систему линейных уравнений.

Как работать с матрицами в Python

Матрица — это двумерный массив, состоящий из M строк и N столбцов. Матрицы часто используются в математических вычислениях. Программисты работают с матрицами в основном в научной области, однако их можно использовать и для других вещей, например, для быстрой генерации уровней в видео-игре.

Матрицы и библиотека NumPy

Программист может самостоятельно реализовать все функции для работы с матрицами: умножение, сложение, транспонирование и т. д. На Python это сделать гораздо проще, чем на более низкоуровневых языках, таких как C.

Но каждый раз писать одни и те же алгоритмы не имеет смысла, поэтому была разработана библиотека NumPy. Она используется для сложных научных вычислений и предоставляет программисту функции для работы с двумерными массивами.

Вместо того чтобы писать десятки строк кода для выполнения простых операций над матрицами, программист может использовать одну функцию из NumPy. Библиотека написана на Python, C и Фортране, поэтому функции работают даже быстрее, чем на чистом Python.

Подключение библиотеки NumPy

NumPy не встроена в интерпретатор Python, поэтому перед импортом её необходимо установить. Для этого в можно воспользоваться утилитой pip. Введите в консоле команду:

Теперь, когда библиотека установлена, её можно подключить с помощью команды import . Для удобства переименуем numpy при импорте в np следующим образом:

Создание

Для создании матрицы используется функция array(). В функцию передаётся список. Вот пример создания, мы подаём в качестве аргумента функции двумерный список:

Вторым параметром можно задать тип элементов матрицы:

Тогда в консоль выведется:

Обратите внимание, что если изменить int на str, то тип элементов изменился на строковый. Кроме того, при выводе в консоль NumPy автоматически отформатировал вывод, чтобы он выглядел как матрица, а элементы располагались друг под другом.

В качестве типов элементов можно использовать int, float, bool, complex, bytes, str, buffers. Также можно использовать и другие типы NumPy: логические, целочисленные, беззнаковые целочисленные, вещественные, комплексные. Вот несколько примеров:

  • np.bool8 — логическая переменная, которая занимает 1 байт памяти.
  • np.int64 — целое число, занимающее 8 байт.
  • np.uint16 — беззнаковое целое число, занимающее 2 байта в памяти.
  • np.float32 — вещественное число, занимающее 4 байта в памяти.
  • np.complex64 — комплексное число, состоящее из 4 байтового вещественного числа действительной части и 4 байтов мнимой.

Вы также можете узнать размер матрицы, для этого используйте атрибут shape:

Первое число (2) — количество строк, второе число (3) — количество столбцов.

Нулевая матрица

Если необходимо создать матрицу, состоящую только из нулей, используйте функцию zeros():

Результат этого кода будет следующий:

Получение строки, столбца и элемента

Чтобы получить строку двухмерной матрицы, нужно просто обратиться к ней по индексу следующим образом:

Получить столбец уже не так просто. Используем срезы, в качестве первого элемента среза мы ничего не указываем, а второй элемент — это номер искомого столбца. Пример:

Чтобы получить элемент, нужно указать номер столбца и строки, в которых он находится. Например, элемент во 2 строке и 3 столбце — это 5, проверяем (помним, что нумерация начинается с 0):

Умножение и сложение

Чтобы сложить матрицы, нужно сложить все их соответствующие элементы. В Python для их сложения используется обычный оператор «+».

Пример сложения:

Результирующая матрица будет равна:

Важно помнить, что складывать можно только матрицы с одинаковым количеством строк и столбцов, иначе программа на Python завершится с исключением ValueError.

Умножение матриц сильно отличается от сложения. Не получится просто перемножить соответствующие элементы двух матриц. Во-первых, матрицы должны быть согласованными, то есть количество столбцов одной должно быть равно количеству строк другой и наоборот, иначе программа вызовет ошибку.

Умножение в NumPy выполняется с помощью метода dot().

Пример умножения:

Результат выполнения этого кода будет следующий:

Транспонированная и обратная

Транспонированная матрица — это матрица, у которой строки и столбцы поменялись местами. В библиотеки NumPy для транспонирования двумерных матриц используется метод transpose(). Пример:

В результате получится матрица:

Чтобы получить обратную матрицу, необходимо использовать модуль linalg (линейная алгебра). Используем функцию inv():

Результирующая матрица будет равна:

Получение максимального и минимального элемента

Чтобы получить максимальный или минимальный элемент, можно пройтись по всем элементам матрицы с помощью двух циклов for . Это стандартный алгоритм перебора, который известен почти каждому программисту:

NumPy позволяет найти максимальный и минимальный элемент с помощью функций amax() и amin(). В качестве аргумента в функции нужно передать саму матрицу. Пример:

Как видим, результаты реализации на чистом Python и реализации с использованием библиотеки NumPy совпадают.

Заключение

На Python можно реализовать все необходимые функции для работы с матрицами. Чтобы упростить работу программистов, была создана библиотека NumPy. Она позволяет производить сложные математические вычисления легко и без ошибок, избавляя программиста от необходимости каждый раз писать один и тот же код.

Матрица в Python – основы работы

В этой статье мы познакомим вас с матрицей Python. Каждую операцию матрицы мы будем реализовывать с помощью кода.

Что такое матрица в Python?

Матрица в Python – это прямоугольный двумерный массив, в котором данные хранятся в строках и столбцах. Матрица может хранить данные любого типа, такие как числа, строки, выражения и т. д. Мы должны ознакомиться с основными концепциями матрицы перед ее использованием.

Данные расположены по горизонтали, называемые строками, а по вертикали – столбцами. Количество элементов внутри матрицы равно (R) X (C), где R – строки, а C – столбцы. Python не имеет встроенного типа для матриц, поэтому мы будем использовать несколько списков в качестве матриц.

Мы изучим следующие операции, которые применяются к матрицам:

  • сложение матриц;
  • матричное вычитание;
  • умножение матриц;
  • скалярное произведение;
  • векторное произведение;
  • и многие другие операции.

Работа матриц

Приведенная ниже матрица имеет размер 2×2, что означает, что у нее две строки и два столбца.

Создание матрицы в Python

Мы можем создать матрицу на Python, используя вложенный список. Все элементы заключаются в квадратные скобки ([]) и разделяются запятой. Посмотрим на следующие примеры:

  • Мы создали матрицу 3×3, используя вложенный список.
  • Первая строка содержит [‘Arun’, 25, 90, 74] в форме списка.
  • Вторая строка содержит список [‘Sachin’, 410, 87.50, 130].
  • Третья содержит [56, «Абхинай», 253, 471] в виде списка.
  • Мы замечаем, что наша матрица состоит из чисел, а также строкового значения.

Чтение матричных данных

Прочитаем каждую строку определенной матрицы.

В следующем примере мы прочитаем последний элемент каждой строки с помощью программы Python.

В приведенном выше коде мы создали матрицу и получили длину матрицы. Мы повторили каждую строку, используя цикл for, и напечатали результат. Можно прочитать любую строку или столбец, используя вышеуказанный метод.

Давайте разберемся со следующей работой матрицы.

Добавление двух матриц

Мы добавим две матрицы и, используя вложенный цикл for, пройдемся по заданным матрицам.

  • Первая и вторая матрицы – 3×3.
  • Мы инициализировали еще одну матрицу mat3, в которой будет храниться равнодействующая матрица.
  • Применили вложенный цикл for для перебора матриц, внешний цикл перебирает первую матрицу.
  • Управление передается во внутренний цикл; затем переходит ко второму внутреннему циклу, здесь значение i равно нулю, и k также равно нулю.
  • В первой итерации первые элементы mat1 и mat2, добавленные друг к другу, будет продолжаться до тех пор, пока не будут добавлены все элементы.

Умножение двух матриц

Умножение двух матриц такое же, как в приведенном выше коде, только нужно изменить оператор + на *.

Транспонирование матрицы

Транспонирование – это операция, при которой строка данной матрицы преобразуется в столбец и наоборот. Рассмотрим на примере.

В приведенном выше коде у нас есть два цикла for для перебора каждой строки и каждого столбца. Как мы видим, в приведенном выше выводе мы присвоили mat1 [i] [j] и res [j] [k].

Транспонирование с помощью списка

Мы можем использовать значение списка, чтобы транспонировать матрицу с одной строкой кода.

Результат такой же, как и выше. Значение списка сократило количество строк кода и транспонировало матрицу.

Получение матричного ввода от пользователя

До сих пор мы обсуждали предварительно определенные матрицы. Но что, если пользователь хочет ввести свои данные. Итак, разберем следующий пример пользовательской матрицы.

В приведенном выше коде мы взяли данные пользователя, чтобы ввести количество строк и столбцов. Мы ввели 3 строки и 3 столбца; это означает, что в матрице будет 9 элементов. В цикле for элементы вставляются в пустую матрицу с помощью функции append(). Второй цикл for используется для печати входных данных в матричном формате.

Использование функции NumPy и map()

Python предоставляет внешнюю библиотеку NumPy. Она используется для научных вычислений; мы изучим NumPy с матрицей в разделе ниже и используем ее для матрицы пользовательского ввода.

Пример: Создание матрицы с использованием библиотеки NumPy

Библиотека NumPy помогает нам работать с массивом. Чтобы работать с NumPy, нам нужно установить ее, используя следующую команду.

После успешной установки мы должны импортировать ее в нашу программу.

Давайте разберемся в следующем примере.

Работа с матрицей с помощью NumPy

Мы можем выполнять все операции с матрицей, используя numpy.array(), такие как сложение, вычитание, транспонирование, нарезание матрицы и т. д.

Добавление матрицы

Мы создадим две матрицы с помощью функции numpy.array() и добавим их с помощью оператора +. Давайте разберемся в следующем примере.

Умножение

Мы будем использовать метод numpy.dot() для умножения обеих матриц. Это точечное умножение матриц mat1 и mat2, обрабатывает 2D-массив и выполняет умножение.

Нарезка элементов

Мы можем разрезать элемент матрицы, как в стандартном списке Python. Нарезка возвращает элемент на основе индекса начала / конца. Мы также можем сделать отрицательную нарезку. Синтаксис приведен ниже.

Arr представляет имя матрицы. По умолчанию начальный индекс равен 0, например – [: 3], это означает, что начальный индекс равен 0. Если мы не предоставим конечное значение, он будет учитывать длину массива. Мы можем передавать отрицательные значения индекса как в начало, так и в конец. В следующем примере мы применим нарезку в обычном массиве, чтобы понять, как она работает.

Теперь мы реализуем нарезку по матрице. Для выполнения следуйте синтаксису ниже.

Mat1 [row_start: row_end, col_start: col_end]

В приведенном выше синтаксисе:

  • Первое начало / конец представляет строки, которые означают выбор строк матрицы.
  • Первое начало / конец представляет столбцы, которые означают выбор столбца матрицы.

Мы будем выполнять нарезку в приведенной ниже матрице.

Вышеупомянутая матрица состоит из четырех строк. В 0-м ряду есть [4, 10, 60, 18, 20], в 1-й строке – [35, 16, 19, -12, 41] и так далее. В нем пять столбцов. Рассмотрим на примере.

В приведенном выше примере мы напечатали первую и вторую строки и нарезали первый, второй и третий столбцы. Согласно синтаксису нарезки мы можем получить любые строки и столбцы.

Пример – печать первой строки и всех столбцов:

Пример – печать строк матрицы:

Заключение

До сих пор мы обсуждали базовую матрицу с использованием Python. Матрица Python – это специализированный двумерный прямоугольный список данных. Она может состоять из чисел, строк, выражения, символов и т. д. Python не предоставляет прямого способа реализации матричного типа данных. Мы можем создать матрицу, используя вложенный список и библиотеку NumPy.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *