2rx8 что значит
Перейти к содержимому

2rx8 что значит

Как выбрать оперативную память

Для выбора ОЗУ следует хотя бы в общих чертах знать, какая память бывает, потому что не всегда удаётся найти точно такую же модель, которая уже установлена. Особенно если ищете оперативную память для ноутбука — в готовый продукт ставят безымянные OEM-комплектующие, не всегда доступные в розничных магазинах. К счастью, типов памяти совсем немного и всегда можно найти замену с подходящими характеристиками.

Форм-фактор

Платы ОЗУ отличаются форм-фактором (размером). Два самых популярных:

  1. DIMM — стандарт для настольных ПК. Платы DIMM всегда одинаковой длины — 133 мм, но высота варьируется. Те, что меньше, называются низкопрофильными. Они полезны для тех случаев, когда кулер, охлаждающий процессор, своим радиатором перекрывает разъём оперативной памяти и для стандартной «высокой» DIMM просто нет места.
  2. SO-DIMM — такие платы в два раза меньше своих собратьев для ПК (около 67 мм в длину) и предназначены для установки в ноутбуки и настольные компьютеры в миниатюрном форм-факторе. SO-DIMM можно подключить через плату-переходник в разъём для DIMM, т.е. платы совместимы между собой.

ОЗУ не всегда поставляется в виде отдельной планки. Иногда чипы могут быть распаяны прямо на материнской плате — такие в домашних условиях не заменить, но можно добавить дополнительный объём ОЗУ, если на материнской плате есть соответствующий разъём. Распаянную на матплате память также возможно заменить, если чипсет материнской платы и процессор поддерживают больший объём.

Тип DDR — 1, 2, 3, 4

За редким исключением, материнской платой компьютера поддерживается только один тип (поколение) памяти: тот, который сейчас установлен.

Зная только тип памяти, выводы о её производительности делать не стоит. DDR4 однозначно быстрее, чем старая DDR1, но между DDR2 и DDR3, DDR3 и DDR4 разница не столь очевидна, старое поколение может оказаться быстрее. Всё дело в параметрах, о которых дальше.

Регистровая, буферизованная, поддержка ECC

Данные особенности ОЗУ изначально относились к серверным решениям, но в последние несколько лет на Алиэкспресс стало возможным закупиться недорогими б/у процессорами из списанных серверов и сопутствующими комплектующими, поэтому вопросы типа «Какую память взять под LGA 2011v3 — ECC-reg или обычную?» звучат всё чаще. Я вообще по этому делу ни разу не эксперт, поэтому настоятельно рекомендую изучать отзывы к матплатам, потому что поиск совместимой ОЗУ для них сродни рулетке: многое зависит от матплаты и процессора. Среди всего этого зоопарка можно встретить даже ситуации, когда на одной матплате встречаются разъёмы и для DDR3, и для DDR4 памяти, но совместимость зависит от устанавливаемого процессора.

Регистровая память отличается от «обычной» дополнительными регистрами и (или) буфером, предназначенным для более надежного хранения данных в чипах.

ECC — это поддержка памятью функции дополнительного контроля ошибок.

Буферизованная память — это плата ОЗУ, имеющая на борту функцию управления передачей данных, что упрощает совместную работу большого массива таких плат. Т.е. вопросами, в какие ячейки памяти записывать ту или иную информацию, занимаются сами платы, не контроллер памяти на матплате.

Все регистровые и все буферизованные виды памяти поддерживают ECC. Но не всякая ECC — регистровая и (или) буферизованная. Память для настольных ПК не буферизованная. Т.е. буферизованная вам точно не нужна, если вы не собираете суперкомпьютер.

Как правило, в китайские матплаты под серверные процессоры можно воткнуть или обычную DDR3/DDR4, или их регистровые версии с ECC. Но это не точно. Повторю ещё раз: изучайте отзывы о процессорах и материнских платах, если будете собирать или апгрейдить ПК с серверным процессором.

Тайминги

Оперативная память — это плата с распаянными на ней чипами. Внутри чипов находятся ячейки памяти, которые без электропитания хранят данные очень недолго. Нужно все время их обновлять с помощью повторяющихся электрических импульсов определённой силы, длительности и со строго выверенными паузами. Тайминги оперативной памяти — это длительность тех самых импульсов и пауз. Кстати, они настолько короткие, что измеряются наносекундами!

Чем меньше тайминги, тем быстрее можно обновить данные, тем производительней память. Меньше = лучше. Тайминги зачастую недооценивают, полагая, что сами по себе они ничего не решают, потому что зависят от тактовой частоты памяти, но на самом деле это не совсем так. Если выбирать между памятью с низкими таймингами и низкой частотой и высокими таймингами с высокой частотой, то у первых пропускная способность может оказаться выше.

Тактовая частота, частота шины, пропускная способность

Тактовая частота оперативной памяти — частота (количество импульсов в секунду), с которой работает оперативная память. Измеряется в мегагерцах. Один мегагерц — это миллион импульсов в секунду. Если производитель не указывает, с какими таймингами работает данная плата ОЗУ, то следует руководствоваться правилом: чем частота выше, тем лучше.

Ещё есть тактовая частота шины («DRAM Frequency» в программе Speccy) — частота канала, по которому идёт обмен данными между оперативной памятью и процессором. Выше — лучше.

Пропускная способность — это сколько за секунду времени может быть «пропущено» данных через плату оперативной памяти. Вычисляется умножением частоты памяти на объем данных, передаваемых за один такт. Чем выше, тем лучше. Измеряется в мегабайтах в секунду. Чаще всего производителем и магазинами указывается пиковая пропускная способность — теоретическая максимальная пропускная способность. Чтобы сразить громадными цифрами покупателя, не иначе.

Объём

С каждым годом выходят всё более ёмкие платы ОЗУ. Сейчас в магазинах вы найдете платы на 512 Мб, 1, 2, 4, 8 и 16 гигабайт. Есть и больше, но только для серверов.

На 2017 год 8 Гб оперативки — комфортный минимум для игр. 4 Гб — минимум для офисного компьютера. Чем лучше, тем больше.

Обновление в 2020 году: для игр теперь минимум — 16 Гб. Для офисных машинок по-прежнему хватает 4 Гб, но лучше ставить больше.

Напряжение

В зависимости от моделей ОЗУ, стандартное напряжение у плат бывает в диапазоне:

  • DDR3 — 1,5-1,65 вольт,
  • DDR4 — 1,2-1,4 вольт.

Помимо «обычных» плат DDR3 и DDR4, существуют энергоэффективные версии — DDR3L и DDR4L. «L» версии по умолчанию работают при более низком напряжении.

  • DDR3L — 1,35 вольт.
  • DDR4L — 1,05 вольт.

Максимальный порог напряжений такой же, как и у обычной памяти — 1,65 и 1,4 вольта соответственно.

Как правило, оперативная память работает корректно без лишних телодвижений со стороны пользователя — требуемое напряжение и другие характеристики (тайминги), определяются автоматически, ничего регулировать не надо.

Но иногда всё же приходится лезть в BIOS (настройки материнской платы), чтобы выставить корректное напряжение. Такое происходит, когда в ПК установлена планка, по умолчанию работающая на напряжении выше 1,5 вольта, вместе с «обычной» или Low Energy версией. Например, у меня в ПК установлены две планки DDR3 AMD Performance Edition, которые по умолчанию работают при напряжении 1,65 V, и пара безымянных планок с Ebay, купленных на распродаже, для которых номинальное напряжение — более популярное 1,5 V. Так как напряжение ставится одно на всех, матплата решила подать 1,65 V. В принципе, при таких условиях может работать даже DDR3L, но так как я точно знаю, что планки от AMD в моём ПК отлично работают даже на 1,4 V, я выставил принудительно 1,5 вольта. Кто знает, какие компоненты стоят в безымянной памяти, вдруг именно в моём случае они не рассчитаны на 1,65?

Если же вы, допустим, поставите в настольный ПК платы DDR3 1,5 V и DDR3L 1,35 V, ничего страшного не произойдёт — обе будут работать под напряжением 1,5 V. С ноутбуками ситуация иная: иногда силовая часть материнских плат не рассчитана на питание большее, чем у комплектной памяти в «L» исполнении, тогда при установке более энергоёмкой платы возможна нестабильная работа и/или перегрев.

Так в чем измеряется скорость оперативной памяти?

Зная пропускную способность, становится проще понять, какая память быстрее. Это свойство, исходящее из всех остальных характеристик. Пропускную способность частенько не сообщают, поэтому приходится ориентироваться на частоту и тайминги, хотя они могут запутать и ввести в заблуждение. У памяти может быть высокая частота, но высокие (т.е. медленные) тайминги — в итоге пропускная способность будет такой же, как у памяти с низкой частотой, но низкими (быстрыми) таймингами.

К сожалению, производители любят нагружать потребителя странными цифрами, обзывая память по-разному. Поэтому специально для вас подготовил несколько табличек, которые прояснят ситуацию и позволят, зная тип оперативной памяти и одну из частот, узнать пиковую пропускную способность. По ней и решайте, какая память быстрее.

DDR1

Стандарт Частота памяти Частота шины Пропускная способность Пиковая пропускная способность
DDR-200 100 100 200 1600
DDR-266 133 133 266,67 2133,33
DDR-333 166,67 166,67 333,33 2666,67
DDR-400 200 200 400 3200

DDR2

Стандарт Частота памяти Частота шины Пропускная способность Пиковая пропускная способность
DDR2-400 100 200 400 3200
DDR2-533 133 267 533 4267
DDR2-667 167 333 667 5300
DDR2-800 200 400 800 6400
DDR2-1066 266 533 1067 8533

DDR3

Стандарт Частота памяти Частота шины Пропускная способность Пиковая пропускная способность
DDR3-800 100 400 6400 6400
DDR3-1066 133 533 8500 8533
DDR3-1333 166 667 10600 10666
DDR3-1600 200 800 12800 12800
DDR3-1866 233 933 14900 14933
DDR3-2133 266 1066 17000 17066

DDR4

Стандарт Частота памяти Частота шины Пропускная способность Пиковая пропускная способность
DDR4-1600 200 800 1600 12800
DDR4-1866 233 933 1867 14933
DDR4-2133 266 1066 2133 17066
DDR4-2400 300 1200 2400 19200

В таблицах нет всех частот оперативной памяти, какие есть в магазинах — в пределах одного стандарта могут быть разные частоты. Указаны наиболее популярные. Также нет и таймингов — увы, просчитать их в статической таблице не представляется возможным. Поэтому вам следует глянуть в магазине тайминги у самых дешёвых и дорогих планок ОЗУ и стремиться выбрать ту, у которой тайминги ниже в приблизительных рамках отобранной памяти.

Интересный момент: память с поддержкой высоких частот может работать и на низких. Если материнская плата поддерживает максимум DDR3 PC12800 с частотой 200 Мгц, можно воткнуть дорогую DDR3 PC17066 — она просто заработает на меньших частотах. При этом, при большом желании, можно разогнать память, снизив тайминги и получив пропускную способность выше, чем у обычной DDR3 PC12800.

Примеры: память в магазинах

Чтобы не попасть впросак, нужно уметь выбирать среди множества плат подходящую. Самое важное — чтобы подошёл форм-фактор (ноутбучную память в настольный не воткнёте без переходника!), тип и частота.

1. Оперативная память Kingston HyperX FURY Black [HX318LC11FB/8] 8 Гб (DDR3L, 8 Гбx1, 1600 МГц, PC12800, 11-11-11-32):

Как проверить оперативную память средствами Windows 2

Производитель — Kingston. Маркетологи обозвали плату громким названием HyperX FURY Black. Название по системе производителя [HX318LC11FB/8] нам мало о чем говорит. К счастью, магазин указал характеристики.

Магазин указал в описании, что это память типа DDR3 L . Буква «L» означает, что память работает на напряжении ниже обычного, поэтому будет меньше греться. «8 Гбx1» означает, что в коробке будет одна плата оперативки объемом 8 гигабайт.

Частота 1600 МГц, если посмотреть таблицу DDR3 выше, кажется неправдой. Хитрость тут в том, что из-за особенностей работы DDR3 производитель удваивает частоту в описании, поэтому у DDR3 нужно смотреть колонку «Стандарт». То есть на самом деле у такой оперативной памяти частота 800 МГц и пропускная способность 12800 мбайт/сек. Которая, кстати, указана дальше — «PC12800». Также указаны основные тайминги — 11-11-11-32, но они уже не важны — пропускная способность известна.

Такая память подойдет для большинства материнских плат, поддерживающих DDR3. Однако DDR3L стоит дороже обычной DDR3, поэтому лучше выбрать вариант подешевле.

2. Original SAMSUNG DDR3 RDIMM 16Gb < PC3-12800 > ECC Registered+PLL:

Как проверить оперативную память средствами Windows 3

Производитель, ясное дело, Samsung. Тип: DDR3. RDIMM — значит, это регистровая память с коррекцией ошибок. Об этом говорит и надпись «ECC Registered+PLL». Объем — 16 Гб на одной плате. Пропускная способность — 12800. RDIMM работает только в серверах, на домашних ПК не заведётся! Проходим мимо. Хотя, если у вас Xeon…

3. Память, которая заработает в любом современном ПК, чья материнская плата поддерживает современный тип DDR4 — Kingston HyperX Fury (16 Гб x 1) DIMM DDR4 2400 МГц:

Как проверить оперативную память средствами Windows 4

Производитель, понятное дело, Kingston. Название — Kingston HyperX Fury. Тип — DDR4, полноразмерная DIMM для настольных ПК. Объем одной платы — 16 гигабайт. Пропускная способность — 19200 мегабайт в секунду. Тайминг указан один — 15 наносекунд. Судя по CL, это CAS Latency — время, которое проходит между запросом процессора данных из памяти и моментом выдачи этих данных памятью.

Что установлено сейчас?

Надеюсь, благодаря примерам выше вы стали экспертом по выбору оперативной памяти. А что делать, когда нужно узнать, какая память установлена сейчас?

Если компьютер работает

Можно воспользоваться программой Speccy или аналогичными:

Как проверить оперативную память средствами Windows 8

Раздел «Оперативная память» («RAM») в программе Speccy покажет необходимое: тип («Type»), объём («Size»), частоту (DRAM Frequency) и тайминги.

Можно в разделе «Материнская плата» («Motherboard») узнать название материнской платы и поискать её описание на сайте производителя или в Яндекс.Маркете. Если ей поддерживается память с большей частотой, можно смело покупать более быструю память.

Если компьютер с неработающей ОЗУ

Ситуация: у вас на руках компьютер, который не включается, и вы точно знаете, что причина в оперативной памяти. Плата имеется, просто нельзя запустить компьютер и с помощью Speccy увидеть характеристики.

В таком случае, если это настольный компьютер и он не на гарантии, можно снять боковую крышку и аккуратно извлечь плату, открыв защелки по краям разъёма. Понятная без слов инструкция:

С ноутбуками сложнее. Память скрыта за крышкой, закрывающей всё днище ноутбука или за небольшой отдельной. Нужно искать инструкцию к своему ноутбуку и смотреть, чтобы ненароком не открутить что-нибудь не то.

Часто на сайте производителя на страничке модели вашего ноута будет PDF-инструкция с разделом «How to replace RAM». Можно и на Ютубе поискать видеоинструкцию. Например, для HP 630:

Как опознать по надписям на плате

Смотрите наклейки на плате. Часто там сразу указаны характеристики и можно просто по ним отобрать плату в любом интернет-магазине.

Но бывают сложные случаи, когда на плате есть только малопонятные надписи и ничего о частотах и пропускной способности.

1. Оперативная память из настольного ПК:

Как выбрать оперативную память

Слева видео логотип производителя — Kingston. Справа — надпись, где есть одна знакомая цифра, похожая на частоту: «KVR 1333 D3N9/1G». Гуглим «Kingston KVR1333D3N9/1G» и находим плату в Яндекс.Маркете. Оказывается, такая память есть есть во многих магазинах:

Оперативная память на Яндекс.Маркете

Оперативная память на Яндекс.Маркете

Можно сразу заказывать и не заморачиваться с подбором.

2. Безымянная память из ноутбука. На наклейке есть только название производителя G.SKILL и серийный номер:

Как выбрать оперативную память 1

Гуглим «G.SKILL 11330000000000» и… ничего. Смотрим в каталоге производителя список имеющейся оперативки и обалдеваем: на разной памяти маркировка одинаковая!

«Спасибо» G.SKILL за одинаковые наклейки на всём товаре!

Более того, надписи на чипах памяти тоже совпадают, хотя характеристики у памяти разные.

В таком случае остается одно: идти на страничку модели на сайте производителя ноутбука и смотреть там подсказки. Обычно указывают тип установленной памяти. Если повезет, и частоту напишут. В противном случае просите у техподдержки список совместимой оперативной памяти для вашего ноутбука. По списку можно будет понять, какой частоты память поддерживается. Поверьте: покупать наугад не стоит. Может статься, что ноутбуку нужна память DDR3L, а с обычной DDR3 не работает.

Если оперативной памяти нет

Вам достался компьютер без оперативки? Странный случай.

Если это настольный ПК, ищите материнской плате надписи:

Как выбрать оперативную память 2

Иногда будет сразу указан тип поддерживаемой оперативной памяти. Иначе придется гуглить: крупный текст — это название модели мат. платы. На страничке материнской платы на сайте производителя вы найдете искомые характеристики.

В случае с ноутбуками ищем в Интернете модель, смотрим характеристики или спрашиваем техподдержку производителя о поддерживаемой оперативной памяти.

Вопросы и ответы

В: Для Windows XP/7/8/10/100500 сколько Гб нужно?

О: Вы работаете с программами, не с операционной системой. Поэтому смотрите системные требования игр, в которые играете, и программ, с которыми работаете.

В: У меня в компьютере установлена оперативная память с частотой ***, можно добавить с другой?

О: Можно. Обе платы ОЗУ будут работать с наименьшей общей частотой.

В: Что лучше — две планки по 8 Гб или одна на 16 Гб?

О: Две планки с одинаковым объемом будут работать в двухканальном режиме. Это означает, что общая пропускная способность удвоится по сравнению с одной. С другой стороны, на практике это не даст ощутимого прироста производительности в большинстве случаев. Так что смотрите на свой бюджет. Может быть, лучше взять одну на 16 и через год-другой добавить вторую такую же?

В: Можно ставить несколько планок с разным объемом памяти?

О: Да.

В: Станет ли быстрее компьютер, если поставить более быструю память?

О: Да. Но в большинстве случаев разницы не заметите.

В: Тормозят игры. Если добавлю больше гигабайт оперативной памяти, игры станут работать быстрее?

О: Если было дело в нехватке оперативной памяти — да. Если игре требуется более быстрая видеокарта или процессор — нет.

В: Процессоры и видеокарты разгоняют. Можно ли разогнать оперативную память?

О: Можно, но не нужно. В большинстве случаев частота и тайминги ОЗУ на производительность компьютера в реальных задачах не влияют.

В: Можно ли поставить память типа DDR3L вместе с DDR3?

О: Сам не проверял. В Интернете пишут, что можно. Лучше об этом спросить техподдержку производителя вашей материнской платы.

В: В компьютер (ноутбук) установлена память DDR3L. Можно поставить обычную DDR3?

О: Если в ноутбуке изначально стоит DDR3L, есть вероятность, что только она и поддерживается. Уточните у техподдержки производителя о совместимости с DDR3. Что касается настольных ПК — как правильно, DDR3 и «L» версии прекрасно уживаются вместе.

Что-то еще?

Не стесняйтесь спрашивать в комментариях. Помогу, чем смогу.

WooCommerce: недостатки, о которых следует знать
Настройка Arch Linux для хостинга сайтов с оптимизацией PageSpeed
Настройка геймпада на ПК

Difference between 2Rx4 vs 2Rx8 RAM

My IT provider is convincing me there is no difference between a 2Rx4 and a 2Rx8 RAM. A little digging around informed me that x4 means 4 bits on a chip vs x8 means 8 bits. Which is good, but what difference does that make?

4 Answers 4

2R == 2 RANKS, this is the number of chip selects each DIMM module has.

x4 == data-bus width of each DRAM (chip)

DDR* memory bus width is 64-bits wide.

So a single 1Rx8 (non-ecc, unbuffered) DIMM will have 8 DRAMS (chips) . 1Rx4 will have 16 1Rx16 will have 4

Ranks, on the other hand, are 64-bit arrays that share the bus. Only one rank can have the bus at a time, the chip select line is the ranks way of knowing that it is that ranks turn to have the bus.

So a 2Rx8 will have 16 chips.

First and foremost, the difference is that they are completely incompatible with each other for use in most server boards. If you’re replacing an existing memory module you must either match the given designation perfectly or replace the whole bank with the new type. If you’re evaluating a completely new configuration, then see Tom Shaw’s answer, and when checking compatibility, the «1x» means «Single Rank» and «2x» means «Double Rank» if the system specifications call for one or the other specifically.

There’s not enough information to say which is better. When looking at RAM you probably care about a number of things:

  • Cost
  • Density (bytes per slot)
  • Performance (RAM timings)
  • Reliability (quality, ECC vs non-ECC)
  • Compatibility (will it work?)
  • Supportability (vendor requirements)
  • Power usage (heat dissipation)

The 2Rx4 and 2Rx8 DIMMs may well give you different characteristics for many reasons, but you’d need to ask your vendor about those characteristics directly.

If it is the right module (example: PC4-12800) then it should fit the slot and perform as well as the relevant standard (example: DDR4-1600K). The matter of integration within components versus on the board of the DIMM is usually not a concern to most users. A DIMM with fewer chips might use a little less power. If power is the constraint then you might solve it by changing DIMMs but that would be a low quality solution.

That said, adhere to the instructions of the motherboard manufacturer. The sizes and placement (matched sizes in the correct slots) of the DIMM modules can have a large effect on the throughput of the system even when the quantity of memory is more than adequate. (Note: I am not referring to the size of components used to assemble the ranks on the DIMM. I am referring to the DIMM size.)

Маркировка оперативной памяти: примеры и расшифровка

В «Игромании» №4/2013 мы запустили серию материалов «Правила выбора», посвященную основным техническим параметрам компьютерного железа. Несмотря на общее название, каждая статья полностью самостоятельна и рассказывает не только о том, какими характеристиками обладает определенный тип оборудования, но и о том, на какие из них важно обращать внимание, а на какие не очень.

В первых двух выпусках мы успели разобраться с процессорами и материнскими платами, теперь пришла очередь оперативки. Параметров у нее не то чтобы много, но все они достойны пристального внимания. Сегодня мы выясним, сколько гигабайтов брать, так ли уж важна многоканальность и стоит ли переплачивать за частоту. Ну а для закрепления теории проведем серию экспресс-тестов и расскажем, откуда вообще взялась оперативка и какие еще варианты были в прошлом.

Правила выбора — оперативная память. Что скрывается за цифрами из технических характеристик

Объем

Определить роль оперативки в компьютере несложно. Нашей главной вычислительной единице, процессору, для беспрерывной работы необходима постоянная подпитка данными. Все дровишки сложены на винчестере, но кристаллу он сродни огромному складу, находящемуся за тысячу километров. Информация с него идет слишком медленно и не может удовлетворить потребности камня. И вот чтобы дорогая штука не простаивала, существует оперативная память, локальный сарайчик, в который заранее завозятся нужные материалы и по мере надобности отправляются к ЦП на запредельной для обычного жесткого диска скорости.

Что же хранится в сарайчике? Да все подряд. Если интересно, нажмите прямо сейчас Ctrl+Alt+Delete и посмотрите на цифры в «Диспетчере задач». Гигабайта полтора занимает десяток открытых в браузере вкладок, около сотни мегабайт кушает антивирус, понемногу заполняет пространство системное ПО. И пока остается свободное место, выглядит это мирно и буднично. Ключевое слово — «пока».

Запуск ресурсоемкого приложения или даже открытие особо «тяжелой» странички в Google Chrome — и памяти как не бывало. С точки зрения бестолковой железки, все нормально. Ну нет быстрого хранилища, и фиг с ним: закинем файлы в «своп» (кусочек HDD, выделяемый на подобные случаи) и будем работать дальше. Для нас же такое решение оборачивается адом: тормоза, зависания и разбитые мышки с клавиатурами.

Бороться с ахтунгом можно тремя способами. Первый — перестать нервно кликать по иконкам и пойти пить чай. Рано или поздно система разберется с творящимся ужасом, перераспределит нагрузку и вернется к нормальному состоянию. Второй — следить за запущенными программами и не допускать переполнения памяти: заранее закрывать ненужные вкладки в браузере, завершать работу с Word, фотографиями и графическими редакторами. Ну и третий — самый простой — наращивать объем оперативки.

Сколько брать?

Сколько понадобится системе — зависит от ваших потребностей. Для офисной работы и активного интернет-серфинга достаточно 4 ГБ. Любителям посмотреть онлайн-видео лучше обзавестись 8 ГБ. Ну а людям творческих профессий, не мыслящих себя без фото/аудио/видеоредакторов, может не хватить и 128 ГБ.

Что же касается игр, то вы будете приятно удивлены. На fps объем практически не сказывается. Мы проверили BioShock Infinite

и «тяжелейший»
Metro: Last Light
на стенде с 2, 4, 8 и 12 ГБ оперативки. Между первым и последним вариантами разница составила всего 3%! Конечно, свою роль тут сыграла «чистота» операционки, но общая тенденция понятна: при ограниченном бюджете деньги разумнее вкладывать в видеокарту, а не «лишние» гигабайты, результат будет ощутимее.

Куда сложнее определиться, какие именно планки ставить. Наиболее распространенные — по 2/4/8 ГБ, хотя бывают и раритеты по 1 ГБ или даже по 512 МБ. Казалось бы, самое простое — взять модель потолще и не забивать голову ерундой. Но многих подобная легкомысленность пугает: «А как же двухканальность?» Да, есть такая штука.

Каналы

Как мы уже успели объяснить, память забирает данные с жесткого диска и передает их процессору. Работать по воздуху она не умеет и пользуется шиной данных, за глаза называемой каналом. За такт он может передать до 64 бит информации, а благодаря некоторым особенностям оперативки и все 128 бит (что и зашифровано в названии — Double Data Rate (DDR)). Цифры эти, надо сказать, более чем внушительные и для DDR3-1066 МГц обеспечивают пропускную способность в 8528 МБ/с (та самая маркировка PC-8500). Проблема одна: канал используется всеми модулями по очереди, а отсюда падение производительности.

Решить задачу взялись с выпуском Pentium 4 — пришпандорили материнке еще одну шину, повесили на нее каждую вторую планку и ввели понятие двухканальности. Последнее означало следующее: если поставить два идентичных модуля в слоты разных каналов, то компьютер их воспримет как одну, особо жирную плашку памяти и будет общаться с ней на скорости 256 бит за такт. То есть увеличит пропускную способность с 8528 до 17 056 МБ/с.

Звучит многообещающе, но только в теории. По нашим тестам в Everest, прибавка от дополнительной дорожки составляет всего 3 ГБ/с, которые в играх выражаются в «плюс 2-3%» к счетчику fps (смотрите наши таблички). Конечно, с учетом сравнимой стоимости 2х2 ГБ и 1х4 ГБ — бонус приятный, жертвовать им не стоит, но есть нюанс.

Материнская плата поддерживает строго определенное количество памяти. В ТТХ записано «4х DDR3 до 16 ГБ»? Значит, чипсет может принять четыре модуля объемом до 4 ГБ каждый. Возьмете версии меньшей емкости — в будущем, при апгрейде, не сможете реализовать весь потенциал своей системы.

Если денег сразу на две рекомендуемые модели не хватает, ничего страшного. Берите одну, потом докупите еще планку и организуете двухканалку. Особых проблем с этим сейчас нет, главное — придерживаться правила одинакового объема и скорости, о которой мы расскажем отдельно.

За скоростью

Стандартом для оперативки сегодня считается 1333 МГц. Однако есть планки гораздо быстрее и заметно дороже. Зачем они нужны? Да все для того же — увеличения пропускной способности.

Рассчитывается она просто: частоту модуля умножаем на ширину шины (64 бит) и делим на восемь для перехода к байтам. Из этой формулы вытекает логичное заключение: скорость напрямую влияет на пропускную способность, а значит, ведет к прибавке fps. Только вот если отталкиваться от тестов двухканальности, то для еще одной пары кадров частоту надо повысить в два раза. То есть купить вместо DDR3-1333 МГц версию на 2600 МГц, которая в полтора раза дороже. Стоит ли оно того — решать вам.

В случае положительного ответа не забудьте проверить, поддерживает ли материнка выбранные модели: доступные варианты отмечаются в той же графе, что и максимальный объем. Ну и обратите внимание на тайминги планок. Записываются они в виде четырех чисел — например, «9-9-9-24». Каждая цифра указывает, сколько тактов нужно модулю для перехода к следующей строчке или столбцу с данными. Чем меньше значения, тем лучше для производительности. Как правило, с поднятием частоты тайминги увеличиваются, а это приводит к росту нежелательных задержек.

Как видите, ничего сложного в выборе планок памяти нет. Определяемся с нужным объемом, решаем, необходима ли лишняя скорость, и вперед, за покупками. С производителями можно особо не напрягаться — чипы всем в основном поставляет либо Samsung

, либо
Hynix
. То же касается и мощного охлаждения. Память не склонна к перегреву, и даже в топовые компьютеры с несколькими видеокартами набирают самые обычные планки по 300 рублей за 1 ГБ.

Что такое ОЗУ?

Оперативное запоминающее устройство (оперативная память) является временным хранилищем данных на компьютере. Ее задача заключается в том, чтобы загружать запрашиваемые данные из своего хранилища и оставлять их там в зашифрованном виде. Когда пользователь повторно запросит информацию, оперативная память быстрее даст результат, так как исходный материал уже был сохранен. Это принцип работы, от которого зависит расшифровка маркировки оперативной памяти.

Самые главные показатели ОЗУ – это частота и тайминг. Частота работы показывает, с какой скоростью передаются данные. Измеряется этот параметр в мегагерцах (сокр. МГц или MHz).

Тайминг отвечает за задержку времени. То есть, он показывает, сколько времени необходимо оперативной памяти, чтобы обработать запрос и выдать результат.

Тактовая частота

Измеряется в мегагерцах (МГц) и отвечает непосредственно за скорость работы. Процессор и память работают в связке. И от того как они будут сбалансированы — будет зависеть общая производительность. Одна из первых (и главных) характеристик которая указывается в спецификациях.

Первый момент

Бытует мнение что чем выше мегагерцевость памяти, тем комп будет работать быстрее. Но это не совсем так, точнее совсем не так. Если ваш проц не поддерживает работу с высокоскоростной ОЗУ то толку от того что вы купите быструю память нету абсолютно никакого. Я думаю это и так понятно, но есть ещё один очень важный момент.

Второй момент

Я к сожалению тестами не занимаюсь (пока), но вот поискав в сети всякие графики можно понять следующее. Что есть допустим какой-то процессор и с ним тестируют планки с разной частотой и быстрые и медленные. И типа, разницы нету никакой от быстрой памяти, или она минимальная. Я могу из личного опыта сказать лишь следующее.

Всё зависит от самого процессора и приложений которые на нём запускаются. Есть процессоры которые поддерживают высокую память по МГц, но толку от этого тоже не будет если этот процессор сам по себе медленный.

Вот допустим ваш проц поддерживает планки в 4000 МГц, но сам проц слабенький. Вы купили память в 4000 МГц и ждёте чуда. Но его не будет. Ваша система будет работать примерно также как ели-бы вы поставили планки 2000 МГц. Проц просто не сможет обрабатывать тот поток данных, которые озу ему сможет поставлять. Скорость всей системы упрётся в возможности CPU. Это очень тонкий момент и его нужно чувствовать.

Оптимальное решение за вами

Нужно понимать некий баланс, некие рамки в которые стоит вписаться. Это я имею в виду, если вы хотите грамотно инвестировать денежные единицы при покупке. Если много средств на инвестирование в компьютер, то можно брать по максимуму и не парится. Точных закономерных цифр не могу дать, так как опираться на чужие тесты тоже не есть правда. Скажу лиши одно. В данный момент идёт эпоха новой DDR4 и на DDR3 уже не стараются собирать.

Оптимальный выбор при покупке DDR4 будет от 2600 до 3200 МГц. По ценам там разброс небольшой. Соответственно чем больше — тем лучше. Если у вас CPU не сильно шустрый, берите память ближе к 2600. Процессор средненький или чуть выше среднего сегмента? Берите 3200.

Если брать выше 3200 то придётся и брать более мощный процессор, так как велик риск того что более быструю память медленный проц «не сможет раскрыть». Если вы берёте систему под игры, то от памяти там мало будет что зависеть. Есть какое-то влияние оперативы на fps, то оно минимально. В играх основной упор идёт на видеокарту и процессор. Я думаю понятно, едем далее.

Форм-факторы

Иными словами, данный параметр можно назвать стандартизацией размера. Существует два вида форм-фактора маркировки оперативной памяти – это DIMM и SoDIMM.

Первый формат подходит исключительно для настольных компьютеров. Это можно заметить, посмотрев на разъем в материнской плате. Длина данного слота достигает почти 13,35 см. Каждая планка фиксируется защелками по бокам. За счет длины увеличивается количество контактов. Вот, что означает маркировка оперативной памяти DIMM.

У форм-фактора SoDIMM все немного по-другому. Во-первых, размер – этот формат рассчитан на работу в ноутбуках или материнских платах стандарта miniITX. Длина такой планки равна 67,6 мм. Такой размер оправдан тем, что у портативных компьютеров ограниченное внутреннее пространство, а это вынуждает делать комплектующие меньшего размера. Данная маркировка оперативной памяти для ноутбука, а не для стандартного компьютера.

Тем не менее разница в размерах ничуть не влияет на технические характеристики – просто у ноутбуков менее требовательная система, нежели у настольных компьютеров.

Многоканальность

Сейчас уже вряд ли можно найти плашки не поддерживающие эту фишку. Много канальный режим это ускорение работы за счёт количества самих планок. Один и тот же процесс планки будут выполнять вместе.

Это что-то наподобие многоядерности процов. Аналогично это можно описать так: допустим есть несколько мешков картошки и их нужно перетаскать. Два грузчика выполнят эту работу быстрее если они буду каждый мешок таскать вместе, нежели каждый по одному. Три грузчика ещё быстрее. Самый популярный это 2-х канальный режим.

За счёт 2-х канального режима память ускорится на процентов 15-20. Но не в двое как некоторые считают.

Трёх и четырёх канальные памяти я не пробовал, поэтому реальный прирост от них не могу обозначить. Теоретически такая память ещё быстрее. Но. 3 и 4 должен поддерживать ваш процессор и материнская плата. Должны быть соответствующие слоты и их количество.

Типы памяти

В современных компьютерах используется два типа памяти – это DDR3 и DDR4.

Оперативная память DDR3 обладает минимальной частотой в 1033 МГц. А ее «разгонная» частота достигает 1600 МГц. Впервые данный тип памяти был введен в эксплуатацию после 2010 года. Именно с третьего поколения стало возможным использовать оперативную память в качестве резервной для интегрированных графических процессоров.

В случае с маркировкой оперативной памяти DDR4, начальные показатели частот равны 1333 МГц. «Разгонный» потенциал дает возможность увеличить рабочую частоту до 2600 МГц при небольших таймингах. Ее достоинства не только в повышенных частотах, но и в более низком энергопотреблении. Увеличение с 240 до 288 контактов никак не повлияло на размеры планки.

Сокеты для устройств хранения данных

Ещё одна система связи, которая за последние годы значительно изменилась, используется для устройства хранения данных. Во времена PCI и AGP жёсткие диски, дискеты и CD-диски подключались к компьютерам через систему Parallel ATA (также известную как IDE, Integrated Device Electronics).

Название системы кое-что говорит о её работе. Многочисленные сокеты ATA работают параллельно. До двух устройств можно подключать к одному сокету, для чего существовали небольшие перемычки на жёстких дисках.

Сокеты ATA (слева) и коннектор для них (справа)

Рабочие станции и серверы обычно использовали SCSI (Small Computer System Interface) для своих жёстких дисков. Данная технология вышла до появления Parallel ATA и она лучше подходила для подобного окружения, где меньше нагрузка на центральный процессор и обрабатывается множество запросов доступа к жёсткому диску одновременно.

20 лет назад появилась другая система подключения, которая быстро превратилась в стандарт для устройств хранения данных. Это был Serial ATA (SATA). Как видно из названия, здесь нет многочисленных устройств на одном кабеле. Скорость по сравнению с предшественником стала значительно выше и последняя версия способна выдать пропускную способность до 6 Гбит/с.

Четыре сокета 6 Gbps SATA 3.0 и крайний слева SATA Express 10 Gbps

Есть более быстрая версия сокета, которая называется SATA Express. Она предлагает скорости до 10 Гбит/с, чего хватит почти для любых потребностей.

Если вам нужно множество жёстких дисков и оптических устройств хранения данных, проблемой может стать количество соединений SATA на материнской плате.

Если вам нужна максимальная скорость, в наши дни лучшим вариантом является NVM Express (NVMe). В отличие от Parallel ATA или SATA, данная спецификация задаёт интерфейс между сокетом и остальной системой и использует для передачи сигналов PCI Express.

Два наиболее распространённых формата сокета с применением стандарта NVMe называются U.2 и M.2. Первый с механической точки зрения не отличается SATA Express, зато второй заметно отличается. Он использует NGFF (Next Generation Form Factor) и поддерживает три метода коммуникации: PCI Express, SATA, USB.

Есть разные размеры сокетов M.2, включая четыре варианта ширины и каждый поддерживает до восьми устройств разной длины. Также есть три разные ключевые конфигурации. На изображении выше показан сокет шириной 22 мм, который может принимать устройства длиной до 80 мм. Он поддерживает ключ M.

Это пластиковая метка справа, которая говорит нам, что этот сокет использует до четырёх линий PCI Express для обмена данными с остальным компьютером. Что не показывается, так это возможность также использовать интерфейс SATA, если установленное устройство не поддерживает PCIe. В таком случае нужно смотреть на спецификацию конкретного устройства.

Western Digital SN750 M.2 SSD

Какие устройства можно подключить в сокет M.2? Только твердотельные накопители, которые являются самыми быстрыми современными устройствами хранения данных.

В современных компьютерах популярны сочетания, когда Windows устанавливается на подобный твердотельный накопитель PCI Express M.2, а игры и прочие крупные файлы на SATA HDD или SSD.

Классические разъёмы Type I/II PC Card slot (сверху) и сокет Firewire 1394a (внизу справа)

Пока мы смотрели только на те сокеты для устройств хранения, которые нельзя снять. При этом за годы накопились многочисленные коннекторы для устройств, которые можно легко подключить и отключить. Двумя старыми примерами сверху являются PC Card и Firewire. Им на смену пришли USB и карты SD.

На ноутбуках обычно есть оба варианта, тогда как на настольных компьютерах требуется дополнительное устройство чтения для обработки карт памяти SD.

SD-карты и SSD используют одинаковую флеш-память NAND, производительность и объём памяти сильно отличаются. Самые крупные домашние SSD имеют объём 8 Тб. Если вам нужно больше, придётся покупать классические жёсткие диски.

Ноутбук HP Omen 15 содержит мультиформатный картридер SD (крайний справа слот)

Если вы беспокоитесь относительно того, какой тип хранилища следует использовать, NVMe является самым быстрым и дорогим. При этом недавнее сравнение SSD PCIe 4.0 NVMe с современными дисками SATA при загрузке игр показало, что разница невелика.

Отличие DDR3 от DDR3L

На примере маркировки оперативной памяти DDR3L можно отметить, что она отличается от своего близнеца DDR3.

Приставка в конце означает Low, то есть, низкий. Это аргументировано тем, что данный вид оперативной памяти использует более низкое входное напряжение. Его показатель равен 1,35 Вольт. На обычных он 1,5 В. Этот параметр позволяет сократить энергопотребление на 10%. Со стандартной ОЗУ третьего поколения они внешне абсолютно одинаковы.

Совместимость

Первый опыт симбиоза двух поколений оперативной памяти оказался мало успешным. Речь идет о DDR2 и DDR3, а точнее – о материнских платах, на которых располагались оба вида слотов для оперативной памяти. Однако использование разных видов ОЗУ не дало результатов. В итоге материнская плата могла распознавать только один вид памяти.

Что касается DDR3 и DDR3L, то здесь дела обстоят немного проще. Они имеют некую совместимость – материнские платы с разъемами DDR3 могут поддерживать работу с оперативной памятью DDR3L. Но обратной совместимости не предусмотрено, так как материнские платы с разъемами для DDR3L рассчитаны на работу с низким напряжением.

Различия между третьим и четвертым поколениями очевидны – расположение зазора на месте контактов находится в другом месте. Даже в разъем поместить модуль не получится.

Краткое описание терминологии

Сокет, порт, коннектор, интерфейс, слот, шина — все эти слова имеют определённое значение в мире технологий, но со временем они стали частично взаимозаменяемыми. Даже в названии данной статьи сокеты и разъёмы по существу одно и то же.

Сокет или порт представляет собой физическую систему, которая используется для подключения одного вычислительного устройства к другому или к периферийным устройствам. Они содержат в себе набор коннекторов, которые подключаются физически, а также электрический интерфейс.

Последний представляет собой сигнальную систему. Это определяет, какие данные и команды передаются между устройствами. Некоторые слоты/порты используют общую сигнальную систему, которую можно применять к разным портам, другие используют специфическую систему для конкретного сокета. Некоторые поддерживают сразу несколько интерфейсов.

Чтобы упростить задачу, мы всё будем называть сокетом, даже если это порт или интерфейс.

Преимущество DDR4

Данный тип оперативной памяти является топовым для игровых компьютеров, так как обладает «разгонным» профилем и высокими частотами. Практически все современные материнские платы, которые были выпущены после 2015 года, поддерживают DDR4.

Многие производители начали оснащать модули памяти различными программными профилями, системой охлаждения и даже подсветкой. В современных играх объем оперативной памяти играет важную роль. Поэтому вместе с новым поколением пришли увеличенные размеры оперативной памяти. На данный момент одна планка может иметь объем до 64 Гб. Однако новая оперативная память стоит немалых средств – это единственный недостаток.

Сокеты ради сокетов?

Периодически производители решают пойти собственным путем и выпускают проприетарный сокет и интерфейс для эксклюзивного использования. Или же дают возможность приобрести лицензию на его использование для других производителей. Например, Apple Lightning впервые появился осенью 2012 года на iPhone 5, потом на iPod и iPad.

Apple использовала собственный коннектор в предыдущих моделях, намного более крупный 30-контактный. Переход на меньший коннектор и более простой порт давно назревал. Однако, в то время другие производители смартфонов использовали mini и micro USB 2.0.

30-контактный коннектор на iPhone 4S против 8-контактного Lightning на iPhone 5

Через 3 года после этого Apple начала использовать USB 3.0 Type-C в линейке MacBook. Коннектор Lightning по-прежнему применяется в современных iPhone, все преимущества над USB 2.0 давно остались в прошлом.

Такая же ситуация с Thunderbolt. Это продвинутая система подключения, которую совместно разработали Intel и Apple. Первоначально она использовала сокет mini-DisplayPort, последняя версия использует USB Type-C. Мало какие другие производители применяли эту систему из-за необходимости платить за лицензию.

В результате впечатляющий набор функциональных возможностей не помогает массовому распространению.

К счастью, это изменилось спустя несколько лет, когда Intel перестала взимать плату за использование Thunderbolt 3. От старых привычек сложно избавиться, поэтому и сейчас трудно найти компьютеры с интерфейсом Thunderbolt.

Как установить модуль в системный блок

Перед началом установки стоит обратить внимание на маркировку оперативной памяти. Пример представлен на фото далее. Теперь стоит узнать параметры центрального процессора, которые связаны с оперативной памятью. Дело в том, что не всякий процессор может раскрыть потенциал оперативной памяти. Да и не каждый процессор сможет поддерживать разгонный профиль.

Установка одной планки не займет много времени. Для этого понадобится снять крышку системного блока и раздвинуть защелки на материнской плате. Все манипуляции с материнской платой проводятся только в горизонтальном положении, чтобы не повредить комплектующие. Далее планка помещается в разъем и фиксируется с помощью защелок.

После этого нужно собрать все обратно и запустить компьютер. Не дожидаясь загрузки операционной системы, необходимо вызвать меню БИОС, чтобы удостовериться в том, что планка обнаружена и нормально функционирует.

Для работы в двухканальном режиме лучше приобретать модули в паре, так как они тестируются вместе, что положительно сказывается на совместной работе. Если вторая и последующие планки приобретаются отдельно, то стоит обратить внимание на их показатели – частоты и тайминги.

Исследование основных характеристик модулей памяти

Часть 2: Модули Kingston DDR2

Мы продолжаем новый цикл статей, посвященный изучению важнейших характеристик модулей памяти на низком уровне с использованием разработанного нами универсального тестового пакета RightMark Memory Analyzer. Напоминаем, что цель этого исследования заключается в предоставлении всем заинтересованным читателям информации о совместимости данного модуля памяти данного производителя с различным набором материнских плат, основанных на тех или иных чипсетах. На сей раз объектом нашего исследования послужат 512-МБ DDR2-модули Kingston ValueRAM. Информация о производителе модуля

Производитель модуля: Kingston Technology Производитель чипов модуля: Elpida Memory, Inc. Сайт производителя модуля: www.valueram.com/ddr2/ Сайт производителя чипов: www.elpida.com/en/products/ddr2.htmlВнешний вид модуля

Фото модуля памяти

Фото чипа памяти

Part Number модуля и чипа

Расшифровка Part Number модуля

Описание общей системы назначения Part Numbers модулей памяти DDR2 Kingston ValueRAM: www.kingston.com/literature/MKF_586.pdf

Поле Значение Расшифровка
0 KVR Производитель: KVR = Kingston ValueRAM
1 533 Частота: 533 МГц
2 D2 Тип памяти: D2 = DDR2
3 N Тип коррекции ошибок: N = Non-ECC
4 4 Задержка CAS#: 4
5 512 Емкость модуля: 512 МБ

Расшифровка Part Number чипа

Описание технических характеристик (data sheet) 512-Мбит чипов памяти DDR2 Elpida: https://www.elpida.com/pdfs/E0323E81.pdf

Поле Значение Расшифровка
0 E Производитель: E = Elpida Memory
1 Тип (отсутствует, D = монолитное устройство)
2 Код продукта (отсутствует, E = DDR2)
3 51 Емкость/количество банков: 51 = 512М/4 банка
4 08 Ширина внешнего интерфейса микросхем памяти: 08 = x8
5 A Протокол питания: A = SSTL 1.8V
6 B Ревизия кристалла
7 Код упаковки (отсутствует, SE = FBGA)
8 5C Параметры быстродействия микросхемы: 5C = DDR2-533 (4-4-4)
9 E Код охраны окружающей среды: E = без использования свинца

Отметим, что маркировка микросхем данного модуля, скажем так, несколько не соответсвует официальной спецификации, приведенной в data sheet на данный тип микросхем памяти. А именно, отсутствуют поля, характеризующие тип устройства (монолитное, DDR2) и упаковки (FBGA). Возможно, это связано с тем, что рассматриваемый модуль является не серийным, а инженерным образцом и, скорее всего, использует более раннюю ревизию микросхем памяти Elpida, чем ту, которая описана в официальной документации. Данные микросхемы SPD модуля

Описание общего стандарта SPD: JEDEC Standard No. 21-C, 4.1.2 — SERIAL PRESENCE DETECT STANDARD, General Standard

Описание специфического стандарта SPD для DDR2: JEDEC Standard No. 21-C, 4.1.2.10 — Appendix X: Specific SPDs for DDR2 SDRAM (Revision 1.0) JC-45 Appendix X: Specific PD’s for DDR2 SDRAM (Revision 1.1)

Параметр Байт Значение Расшифровка
Фундаментальный тип памяти 2 08h DDR2 SDRAM
Общее количество адресных линий строки модуля 3 0Eh 14 (RA0-RA13)
Общее количество адресных линий столбца модуля 4 0Ah 10 (CA0-CA9)
Общее количество физических банков модуля памяти 5 60h 1 физический банк
Внешняя шина данных модуля памяти 6 40h 64 бит
Уровень питающего напряжения 8 05h SSTL 1.8V
Минимальная длительность периода синхросигнала (tCK) при максимальной задержке CAS# (CL X) 9 3Dh 3.75 нс (266.7 МГц)
Тип конфигурации модуля 11 00h Non-ECC
Тип и способ регенерации данных 12 82h 7.8125 мс — 0.5x сокращенная саморегенерация
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти 13 08h x8
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти ECC-модуля 14 00h Не определено
Длительность передаваемых пакетов (BL) 16 0Ch BL = 4, 8
Количество логических банков каждой микросхемы в модуле 17 04h 4
Поддерживаемые длительности задержки CAS# (CL) 18 38h CL = 3, 4, 5
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-1) 23 3Dh 3.75 нс (266.7 МГц)
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-2) 25 50h 5.00 нс (200.0 МГц)
Минимальное время подзарядки данных в строке (tRP) 27 3Ch 15.0 нс 4, CL = 5, 4 3, CL = 3
Минимальная задержка между активизацией соседних строк (tRRD) 28 1Eh 7.5 нс 2, CL = 5, 4 1.5, CL = 3
Минимальная задержка между RAS# и CAS# (tRCD) 29 3Ch 15.0 нс 4, CL = 5, 4 3, CL = 3
Минимальная длительность импульса сигнала RAS# (tRAS) 30 2Dh 45.0 нс 12, CL = 5, 4 9, CL = 3
Емкость одного физического банка модуля памяти 31 80h 512 МБ
Период восстановления после записи (tWR) 36 3Ch 15.0 нс 4, CL = 5, 4 3, CL = 3
Внутренняя задержка между командами WRITE и READ (tWTR) 37 1Eh 7.5 нс 2, CL = 5, 4 1.5, CL = 3
Внутренняя задержка между командами READ и PRECHARGE (tRTP) 38 1Eh 7.5 нс 2, CL = 5, 4 1.5, CL = 3
Минимальное время цикла строки (tRC) 41, 40 3Ch, 00h 60.0 нс 16, CL = 5, 4 12, CL = 3
Период между командами саморегенерации (tRFC) 42, 40 69h, 00h 105.0 нс 28, CL = 5, 4 21, CL = 3
Максимальная длительность периода синхросигнала (tCKmax) 43 80h 8.0 нс
Номер ревизии SPD 62 10h Ревизия 1.0
Контрольная сумма байт 0-62 63 E1h 225 (верно)
Идентификационный код производителя по JEDEC 64-71 FFh, 98h, FFh, 00h, …, FFh Kingston
Part Number модуля 73-90 Не определено
Дата изготовления модуля 93-94 04h, 19h 2004 год, 25 неделя
Серийный номер модуля 95-98 67h, 28h, 53h, 83h 83532867h

Данные микросхемы SPD показывают, что рассматриваемый модуль имеет организацию 64М x 64 и способен функционировать при трех различных значениях задержки сигнала CAS# (tCL), равных 5, 4 и 3. Интересно отметить, что первые два значения tCL, CL X = 5 и CL X-1 = 4, соответствуют одному и тому же значению периода синхросигнала 3.75 нс, т.е. функционированию модуля в штатном режиме DDR2-533 при частоте 266.7 МГц. В этом случае временные характеристики модуля (тайминги) могут быть записаны как 5-4-4-12 и 4-4-4-12, соответственно. Последнее из поддерживаемых значений задержки CAS# (CL X-2 = 3) соответствует времени цикла в 5.00 нс, т.е. функционированию модуля при частоте 200.0 МГц в режиме DDR2-400. Соответствующая этому случаю схема таймингов — 3-3-3-9. Другой отличительной особенностью рассматриваемого модуля является сравнительно большое минимальное время цикла регенерации (tRFC) — 105 нс, что соответствует 28 тактам шины памяти при частоте 266.7 МГц и 21 такту при 200.0 МГц. Конфигурации тестовых стендов и ПО

Материнские платы на чипсетах серии Intel 915

Тестовый стенд №1
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915G
  • Материнская плата: Intel D915GUX, версия BIOS 1028 от 06/29/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №2
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915P
  • Материнская плата: Foxconn 915A01-P-8EKRS, версия BIOS 6.00 PG от 06/10/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №3
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915G
  • Материнская плата: Foxconn 915M03-G-8EKRS2, версия BIOS 6.00 PG от 05/29/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №4
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915P
  • Материнская плата: MSI 915P Neo2, версия BIOS V1.3B0 от 09/08/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №5
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915G
  • Материнская плата: MSI 915G Combo, версия BIOS 080011 от 07/14/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №6
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i915G
  • Материнская плата: ASUS P5GDC-V, версия BIOS 1003.003 от 08/18/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77

Материнские платы на чипсетах серии Intel 925

Тестовый стенд №7
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i925X
  • Материнская плата: Gigabyte 8ANDXP-D, версия BIOS F1 от 06/07/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №8
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i925X
  • Материнская плата: Intel D925XCV, версия BIOS 1259 от 08/19/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №9
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i925X
  • Материнская плата: ASUS P5AD2, версия BIOS 1004.007 от 07/02/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №10
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i925X
  • Материнская плата: MSI 925X Neo, версия BIOS 6.00 PG от 06/18/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77
Тестовый стенд №11
  • Процессор: Intel Pentium 4 2.8 ГГц (ядро Prescott, 1 МБ L2)
  • Чипсет: Intel i925X
  • Материнская плата: Foxconn 925A01-8EKRS, версия BIOS 6.00 PG от 08/28/2004
  • Память: 2×512 МБ Kingston DDR2-533
  • Видео: Leadtek PX350 TDH, nVidia PCX5900
  • HDD: WD Raptor WD360, SATA, 10000 rpm, 36Gb
  • Операционная система: Windows XP Professional Service Pack 2
  • Драйверы: Intel Chipset Utility 6.0.1.1002, nVidia Forceware 61.77

Материнские платы на чипсетах серии Intel 915

Начиная с этого момента, тестирование модулей памяти будет проводиться в двух режимах. Первая серия тестов — условно назовем их «тестами производительности» — проводится в штатном режиме, т.е. со стандартными значениями таймингов, записанными в микросхеме SPD. Вторая серия тестов осуществляется, так сказать, в «экстремальном» режиме, при выставлении минимально возможных значений таймингов для данного модуля на данной материнской плате. Будем называть эту серию тестов «тестами стабильности», поскольку возможность продолжительной устойчивой работы модуля памяти с более «жесткими» значениями таймингов можно напрямую связать со стабильностью его функционирования в штатном режиме.

Тесты производительности

В то время как модули памяти DDR2 Kingston при функционировании в режиме DDR2-533 предполагают существование двух различных схем таймингов, 5-4-4-12 и 4-4-4-12, в первой серии тестов нами использовалась схема 4-4-4-12, поскольку она, во-первых, ближе соответствует типичным для DDR2-533 значениям, и, во-вторых, выставлялась в настройках BIOS по умолчанию (Memory Timings: «by SPD») на всех без исключения материнских платах.

Как уже отмечалось ранее, использование нынешнего поколения процессоров и чипсетов с частотой FSB 800 МГц не позволяет достичь максимальных значений пропускной способности памяти типа DDR2-533 в двухканальном режиме. Тем не менее, даже в этом случае можно сделать определенные выводы относительно значений реальной ПСП, достижимых на различных материнских платах.

Параметр* Стенд 1 Стенд 2 Стенд 3 Стенд 4 Стенд 5 Стенд 6
Тайминги 4-4-4-12 4-4-4-12 4-4-4-12 4-4-4-12 4-4-4-12 4-4-4-12
Средняя ПСП на чтение, МБ/с 4470 4469 4485 4519 4467 4483
Средняя ПСП на запись, МБ/с 2018 2019 2010 2036 2049 2015
Макс. ПСП на чтение, МБ/с 6337 6346 6337 6401 6321 6353
Макс. ПСП на запись, МБ/с 4267 4266 4266 4324 4266 4281
Минимальная латентность** псевдослучайного доступа, нс 54.8 54.8 54.8 54.2 55.1 54.7
Максимальная латентность** псевдослучайного доступа, нс 63.8 63.8 63.9 63.0 64.1 63.7
Минимальная латентность** случайного доступа, нс 130.4 130.1 130.3 128.5 130.5 129.6
Максимальная латентность** случайного доступа, нс 155.6 155.6 155.5 153.5 155.7 155.1

*жирным шрифтом отмечены наилучшие показатели **Размер блока 16 МБ

Среди материнских плат на чипсетах Intel 915P/915G лидером практически по всем показателям (максимум реальной ПСП, минимум латентности памяти) является MSI 915P Neo2, основанная на чипсете i915P (стенд №4). Интересно отметить, что это дейтствительно единственный лидер — все остальные материнские платы, независимо от типа чипсета (P/G), показали более-менее средний результат. Так, значения реальной ПСП на чтение укладываются в интервал 4470-4480 МБ/с, максимальной ПСП — в 6330-6350 МБ/с, латентность псевдослучайного доступа находится в пределах 55-64 нс. Кстати, лидерство MSI 915P Neo2 можно сравнительно легко объяснить несколько завышенным значением частоты FSB на этой материнской плате, что проявляет себя в виде увеличения значения максимальной реальной ПСП на запись до 4324 МБ/с, которая в норме ограничена пределом в 2/3 от пропускной способности системной шины (4266.7 МБ/с).

Тесты стабильности

Прежде чем переходить к количественным оценкам величин ПСП/латентности памяти в «экстремальном» режиме, остановимся на собственно таймингах памяти, значения которых варьировались «на ходу» благодаря встроенной в тестовый пакет RMMA возможности динамического изменения поддерживаемых чипсетом настроек подсистемы памяти. Устойчивость функционирования подсистемы памяти с теми или иными таймингами определялась с помощью специально разработанной нами вспомогательной утилиты, которая войдет в следующую версию RMMA в качестве дополнения ныне существующему RAM Stability Test.

Итак, минимальные значения таймингов, которые позволяют выставить рассматриваемые модули DDR2 Kingston — 4-3-3-8. В этом режиме подсистема памяти функционирует достаточно устойчиво на большинстве рассматриваемых материнских плат, за исключением «комбинированных» вариантов, основанных на i915G и поддерживающих память типа DDR и DDR2 одновременно — MSI 915G Combo (стенд №5) и ASUS P5GDC-V (стенд №6). Минимальные тайминги, которые можно выставить на этих платах без потери устойчивости подсистемы памяти — 4-3-3-9.

Параметр* Стенд 1 Стенд 2 Стенд 3 Стенд 4 Стенд 5 Стенд 6
Тайминги 4-3-3-8 4-3-3-8 4-3-3-8 4-3-3-8 4-3-3-9 4-3-3-9
Средняя ПСП на чтение, МБ/с 4502 4510 4515 4577 4502 4518
Средняя ПСП на запись, МБ/с 2110 2110 2103 2135 2114 2195
Макс. ПСП на чтение, МБ/с 6411 6408 6404 6498 6395 6430
Макс. ПСП на запись, МБ/с 4267 4267 4266 4324 4267 4282
Минимальная латентность** псевдослучайного доступа, нс 54.6 54.6 54.6 53.8 54.7 54.5
Максимальная латентность** псевдослучайного доступа, нс 63.5 63.6 63.7 62.6 63.8 63.5
Минимальная латентность** случайного доступа, нс 123.9 123.7 124.0 122.2 123.8 123.3
Максимальная латентность** случайного доступа, нс 149.5 149.6 149.6 147.4 149.8 149.2

*жирным шрифтом отмечены наилучшие показатели **Размер блока 16 МБ

Легко видеть, что использование более «жесткой» схемы таймингов нисколько не меняет общую картину производительности подсистемы памяти, которую мы получили в предыдущей серии тестов. Лидером по-прежнему остается MSI 915P Neo2 (стенд №4), тогда как остальные материнские платы показывают примерно одинаковый результат.

Материнские платы на чипсетах серии Intel 925

Тесты производительности

Так же, как и в нашем предыдущем тестировании, материнские платы на чипсете i925X по всем показателям в целом превосходят модели, основанные на i915P/i915G. Лидером среди этой линейки вновь выступает материнская плата от MSI — модель 925X Neo (стенд №10), что также достигается за счет чуть более высокой частоты FSB (максимальная реальная ПСП на запись — 4327 МБ/с). Второе место, практически с равным результатом, разделяют Gigabyte 8ANDXP-D (стенд №7), ASUS P5AD2 (стенд №9) и Foxconn 925A01-8EKRS (стенд №11). На последнем месте почти по всем параметрам располагается Intel D925XCV (стенд №8).

Параметр* Стенд 7 Стенд 8 Стенд 9 Стенд 10 Стенд 11
Тайминги 4-4-4-12 4-4-4-12 4-4-4-12 4-4-4-12 4-4-4-12
Средняя ПСП на чтение, МБ/с 4640 4495 4629 4682 4623
Средняя ПСП на запись, МБ/с 1950 1990 2078 2015 1983
Макс. ПСП на чтение, МБ/с 6357 6308 6343 6445 6383
Макс. ПСП на запись, МБ/с 4287 4266 4282 4327 4266
Минимальная латентность** псевдослучайного доступа, нс 52.0 54.8 52.0 51.6 52.3
Максимальная латентность** псевдослучайного доступа, нс 60.3 63.5 60.4 59.9 60.7
Минимальная латентность** случайного доступа, нс 125.0 129.8 125.0 124.2 125.6
Максимальная латентность** случайного доступа, нс 150.1 154.9 150.1 149.1 150.9

*жирным шрифтом отмечены наилучшие показатели **Размер блока 16 МБ

Тесты стабильности

В отличие от первой серии тестируемых плат с чипсетами i915P/i915G, все рассматриваемые материнские платы на чипсете i925X превосходно работают с модулями DDR2 Kingston при минимальных значениях таймингов 4-3-3-8.

Параметр* Стенд 7 Стенд 8 Стенд 9 Стенд 10 Стенд 11
Тайминги 4-3-3-8 4-3-3-8 4-3-3-8 4-3-3-8 4-3-3-8
Средняя ПСП на чтение, МБ/с 4684 4525 4676 4715 4644
Средняя ПСП на запись, МБ/с 2078 2089 2167 2120 2099
Макс. ПСП на чтение, МБ/с 6434 6367 6429 6522 6438
Макс. ПСП на запись, МБ/с 4287 4266 4282 4327 4266
Минимальная латентность** псевдослучайного доступа, нс 51.7 54.6 51.8 51.4 52.4
Максимальная латентность** псевдослучайного доступа, нс 59.9 63.2 60.1 59.6 60.8
Минимальная латентность** случайного доступа, нс 118.1 122.0 118.1 117.1 118.8
Максимальная латентность** случайного доступа, нс 142.9 147.4 142.9 141.9 144.1

*жирным шрифтом отмечены наилучшие показатели **Размер блока 16 МБ

И вновь, применение более «жесткой» схемы таймингов не привело к каким-либо значительным изменениям в расстановке сил. Первое место занимает MSI 925X Neo, второе место разделяют Gigabyte 8ANDXP-D и ASUS P5AD2, а вот Foxconn 925A01-8EKRS от них немного подотстала, заняв третью позицию. Ну и, конечно, последнее место и в этой серии тестов достается Intel D925XCV. Итоги

Таким образом, наилучшая производительность подсистемы памяти при использовании модулей DDR2 Kingston ValueRAM достигается на материнских платах, основанных на чипсете Intel 925X, в особенности на MSI 925X Neo. Среди плат на чипсетах Intel 915P/915G наилучшая производительность также наблюдается на материнской плате MSI — модели 915P Neo2. Наихудшую производительность подсистемы памяти (среди аналогов) проявляют материнские платы от Intel — модели D925XCV и D915GUX. Что касается стабильности функционирования подсистемы памяти (в «жестком» режиме), все протестированные материнские платы показывают более-менее равный результат, за исключением «комбинированных» моделей, одновременно поддерживающих память DDR и DDR2 — MSI 915G Combo и ASUS P5GDC-V.

Как установить оперативную память в ноутбук

Установка модулей памяти в ноутбук немного отличается от аналогичной операции в настольном варианте. Для этого понадобится отвертка, которой нужно выкрутить винтики на задней крышке портативного компьютера.

Перед началом установки стоит уточнить несколько нюансов. Во-первых, на всех ноутбуках можно установить не более двух планок (на некоторых вообще есть только один слот). Во-вторых, установка двух планок производится исключительно в парном режиме, так как модули от разных производителей вызывают конфликт. Перед работой необходимо отключить ноутбук от сети и вытащить аккумулятор.

Теперь нужно открутить болты крепления крышки, которая закрывает оперативную память. Если происходит замена модуля, то старый необходимо убрать. В случае увеличения объема нужно просто узнать, есть ли свободный разъем. Обратите внимание на то, что большинство моделей современных ноутбуков придется полностью разбирать, чтобы добраться до слота установки модуля.

Метод инсталляции напоминает процесс установки кассеты в магнитофон – в ноутбуке похожий слот. Далее планка помещается в свободный слот и нужно плавно нажимать на нее, пока не будет услышан характерный щелчок, который означает, что модуль зафиксирован.

После сборки можно подключать ноутбук к сети и запускать систему. Если операционная система работает исправно, то ноутбук распознал установленную оперативную память.

Как известно, оперативная память вкладывает большую составляющую в производительность компьютера. И понятно, что пользователи стараются увеличить объем оперативной памяти по максимуму. Если года 2-3 назад на рынке было буквально несколько типов модулей памяти, то сейчас их значительно больше. И разобраться в них стало сложнее.

В этой статье мы рассмотрим различные обозначения в маркировке модулей памяти, чтобы вам проще в них было ориентироваться.

Для начала введем ряд терминов, котоыре нам понадобятся для понимания статьи:

  • планка («плашка») – модуль памяти, печатная плата с микросхемами памяти на борту, устанавливаемая в слот памяти;
  • односторонняя планка – планка памяти, у которой микросхемы памяти расположены с 1 стороны модуля.
  • двухсторонняя планка – планка памяти, у которой микросхемы памяти расположены с обоих сторон модуля.
  • RAM (Random Access Memory, ОЗУ) – память с произвольным доступом, проще говоря – оперативная память. Это энергозависимая память, содержимое которой теряется при отсутствии питания.
  • SDRAM (Synchronous Dynamic RAM) – синхронная динамическая оперативная память: все современные модули памяти имеют именно такое устройство, то есть требуют постоянной синхронизации и обновления содержимого.
  • 4096Mb (2x2048Mb) DIMM DDR2 PC2-8500 Corsair XMS2 C5 [TWIN2X4096-8500C5] BOX
  • 1024Mb SO-DIMM DDR2 PC6400 OCZ OCZ2M8001G (5-5-5-15) Retail

Тип корпуса

DIMM/SO-DIMM – это тип корпуса планки памяти. Все современные модули памяти выпускаются в одном из двух указанных конструктивных исполнений. DIMM (Dual In-line Memory Module) – модуль, у которого контакты расположены в ряд на обоих сторонах модуля. Память типа DDR SDRAM выпускается в виде 184-контактных DIMM-модулей, а для памяти типа DDR2 SDRAM выпускаются 240-контактные планки.

В ноутбуках используются модули памяти меньших габаритов, называемые SO-DIMM (Small Outline DIMM).

Сокеты для аудио

Когда наступает пора подключать динамики и микрофоны к компьютеру, ситуация обычно следующая. Перед нами множество многоцветных коннекторов на обратной стороне компьютера или одно или два отверстия спереди или сбоку в ноутбуках. В любом случае используется стандартный разъём 3,5 мм в формате моно или стерео. Зачем их шесть в одном случае и только один или два в другом?

Выше слева розовый сокет предназначается для микрофона, зелёный для главного динамика или наушников, что также называется линейный выход. Другие обычно нужны для окружающего звука: чёрный для заднего динамика, серый для бокового, оранжевый для центрального и сабвуфера. Синий представляет собой линейный вход, который используется для подключения других музыкальных устройств к компьютеру.

Являются ли эти цвета универсальными? К сожалению нет, поэтому нужно опять смотреть спецификации конкретного устройства, чтобы понять, где есть что.

Сокет S/PDIF над коннектором HDMI

Прежде чем продолжить, скажем про ещё один сокет для аудио. На изображении выше он серый и квадратный.

Это S/PDIF (Sony/Philips Digital Interface), который отправляет аудиосигналы в цифровой поток через оптоволоконный кабель. Используется коннектор под названием TOSLINK. Без сжатия данных он может обрабатывать в лучшем случае два звуковых каналов, со сжатием вроде Dolby AC-3 может передавать полноценный объёмный поток 7.1.

Тип памяти

Тип памяти – это архитектура, по которой организованы сами микросхемы памяти. Она влияет на все технические характеристики памяти – производительность, частоту, напряжение питание и др.

На данный момент используется 3 типа памяти: DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM. Из них DDR3 – самые производительные, меньше всего потребляющие энергии.

Частоты передачи данных для типов памяти:

  • DDR: 200-400 МГц
  • DDR2: 533-1200 МГц
  • DDR3: 800-2400 МГц

Цифра, указываемая после типа памяти – и есть частота: DDR400, DDR2-800.

Модули памяти всех типов отличаются напряжением питания и разъемами и не позволяют быть вставленными друг в друга.

Частота передачи данных характеризует потенциал шины памяти по передаче данных за единицу времени: чем больше частота, тем больше данных можно передать.

Однако, есть еще факторы, такие как количество каналов памяти, разрядность шины памяти. Они также влияют на производительность подсистем памяти.

Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

Пропускная способность (B) = Частота (f) x разрядность шины памяти (c) x кол-во каналов (k)

Например, при использовании памяти DDR400 400 МГц и двухканального контроллера памяти пропускная способность будет: (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

На 8 мы поделили, чтобы перевести Мбит/с в Мбайт/с (в 1 байте 8 бит).

Стандарт скорости модуля памяти

В обозначении для облегчения понимания скорости модуля указывается и стандарт пропускной способности памяти. Он как раз и показывает, какую пропускную способность имеет модуль.

Все эти стандарты начинаются с букв PC и далее идут цифры, указывающие пропускную способность памяти в Мбайтах в секунду.

Название модуля Частота шины Тип чипа Пиковая скорость передачи данных
PC2-3200 200 МГц DDR2-400 3200 МБ/с или 3.2 ГБ/с
PC2-4200 266 МГц DDR2-533 4200 МБ/с или 4.2 ГБ/с
PC2-5300 333 МГц DDR2-667 5300 МБ/с или 5.3 ГБ/с 1
PC2-5400 337 МГц DDR2-675 5400 МБ/с или 5.4 ГБ/с
PC2-5600 350 МГц DDR2-700 5600 МБ/с или 5.6 ГБ/с
PC2-5700 355 МГц DDR2-711 5700 МБ/с или 5.7 ГБ/с
PC2-6000 375 МГц DDR2-750 6000 МБ/с или 6.0 ГБ/с
PC2-6400 400 МГц DDR2-800 6400 МБ/с или 6.4 ГБ/с
PC2-7100 444 МГц DDR2-888 7100 МБ/с или 7.1 ГБ/с
PC2-7200 450 МГц DDR2-900 7200 МБ/с или 7.2 ГБ/с
PC2-8000 500 МГц DDR2-1000 8000 МБ/с или 8.0 ГБ/с
PC2-8500 533 МГц DDR2-1066 8500 МБ/с или 8.5 ГБ/с
PC2-9200 575 МГц DDR2-1150 9200 МБ/с или 9.2 ГБ/с
PC2-9600 600 МГц DDR2-1200 9600 МБ/с или 9.6 ГБ/с
Тип памяти Частота памяти Время цикла Частота шины Передач данных в секунду Название стандарта Пиковая скорость передачи данных
DDR3-800 100 МГц 10.00 нс 400 МГц 800 млн PC3-6400 6400 МБ/с
DDR3-1066 133 МГц 7.50 нс 533 МГц 1066 млн PC3-8500 8533 МБ/с
DDR3-1333 166 МГц 6.00 нс 667 МГц 1333 млн PC3-10600 10667 МБ/с
DDR3-1600 200 МГц 5.00 нс 800 МГц 1600 млн PC3-12800 12800 МБ/с
DDR3-1800 225 МГц 4.44 нс 900 МГц 1800 млн PC3-14400 14400 МБ/с
DDR3-2000 250 МГц 4.00 нс 1000 МГц 2000 млн PC3-16000 16000 МБ/с
DDR3-2133 266 МГц 3.75 нс 1066 МГц 2133 млн PC3-17000 17066 МБ/с
DDR3-2400 300 МГц 3.33 нс 1200 МГц 2400 млн PC3-19200 19200 МБ/с

В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.

Таблица 3.

Игровые тесты
BioShock Infinite
2х 2 Гб, 1066 МГц 102,3
1х 4 ГБ, 1066 МГц 99,5
1х 2 ГБ, 1066 МГц 98,8
4x 2 ГБ, 1066 МГц 104,6
6х 2 ГБ, 1066 МГц 104
Metro: Last Light
2х 2 Гб, 1066 МГц 38
1х 4 ГБ, 1066 МГц 36,7
1х 2 ГБ, 1066 МГц 36,3
4x 2 ГБ, 1066 МГц 37,9
6х 2 ГБ, 1066 МГц 37,5

Производитель и его part number

Каждый производитель каждому своему продукту или детали дает его внутреннюю производственную маркировку, называемую P/N (part number) – номер детали.

Для модулей памяти у разных производителей она выглядит примерно так:

  • Kingston KVR800D2N6/1G
  • OCZ OCZ2M8001G
  • Corsair XMS2 CM2X1024-6400C5

На сайте многих производителей памяти можно изучить, как читается их Part Number. Модули Kingston семейства ValueRAM:

Модули Kingston семейства HyperX (с дополнительным пассивным охлаждением для разгона):

По маркировке OCZ можно понять, что это модуль DDR2 объемом 1 Гбайт, частотой 800 МГц.

По маркировке CM2X1024-6400C5 понятно, что это модуль DDR2 объемом 1024 Мбайт стандарта PC2-6400 и задержками CL=5.

Некоторые производители вместо частоты или стандарта памяти указывают время в нс доступа к чипу памяти. По этому времени можно понять, какая используется частота. Так поступает Micron: MT47H128M16HG-3. Цифра в конце обозначает, что время доступа – 3 нс (0.003 мс).

По известной форуме T=1/f частота работы чипа f=1/T: 1/0,003 = 333 МГц. Частота передачи данных в 2 раза выше – 667 МГц. Соответственно, данный модуль DDR2-667.

Тайминги

Тайминги – это задержки при обращении к микросхемам памяти. Естественно, чем они меньше – тем быстрее работает модуль.

Дело в том, что микросхемы памяти на модуле имеют матричную структуру – представлены в виде ячеек матрицы с номером строки и номером столбца. При обращении к ячейке памяти считывается вся строка, в которой находится нужная ячейка.

Сначала происходит выбор нужной строки, затем нужного столбца. На пересечении строки и номера столбца и находится нужная ячейка. С учетом огромных объемом современной RAM такие матрицы памяти не целиковые – для более быстрого доступа к ячейкам памяти они разбиты на страницы и банки. Сначала происходит обращение к банку памяти, активизация страницы в нем, затем уже происходит работа в пределах текущей страницы: выбор строки и столбца. Все эти действия происходит с определенно задержкой друг относительно друг друга.

Основные тайминги RAM – это задержка между подачей номера строки и номера столбца, называемая временем полного доступа (RAS to CAS delay, RCD), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (CAS latency, CL), задержка между чтением последней ячейки и подачей номера новой строки (RAS precharge, RP). Тайминги измеряются в наносекундах (нс).

Эти тайминги так и идут друг за другом в порядке выполнения операций и также обозначаются схематично 5-5-5-15. В данном случае все три тайминга по 5 нс, а общий рабочий цикл – 15 нс с момента активизации строки.

Главным таймингом считается CAS latency, который часто обозначается сокращенно CL=5. Именно он в наибольшей степени «тормозит» память.

Основываясь на этой информации, вы сможете грамотно выбрать подходящий модуль памяти.

Для правильного выбора оперативной памяти необходимо разбираться в маркировке характеристик и понимать их влияние на быстродействие компьютера. Нельзя опираться только на объём и игнорировать другие важные параметры.

Расшифровка обозначений

Производители оперативной памяти часто используют свои собственные маркировки для обозначения моделей, но характеристики всё же стараются указывать в едином формате. Например, из планки от «Сrusial» можно извлечь следующую информацию.

4GB DDR3L-1600 UDIMM 1.35V CL11

Стандарт планок DIMM, UDIMM и SODIMM

Такими сокращениями обозначают стандарт планок. DIMM это планки для персональных компьютеров, а SO-DIMM (Small Outline Dual In-line Memory Module) — для ноутбуков — по размеру короче и выше.

Ещё можно встретить следующие обозначения:

  • U-DIMM — без буфера;
  • R-DIMM — с буфером;
  • LR-DIMM — с буфером и пониженным энергопотреблением;
  • FB-DIMM — с полной буферизацией.

U-DIMM — разновидность DIMM памяти, используется в 99% домашних ПК. «U» обозначает что у планки нет защиты от возникновения ошибок при обращения к ячейкам. Это позволяет ей быстрее работать и дешевле стоить. Для повседневных задач отсутствие защиты не критично. В маркировке часто букву «U» не пишут, оставляя только DIMM.

R-DIMM, LR-DIMM и FB-DIMM — планки для серверов и вычислительных систем, в которых нужна максимальная надёжность работы. Стоят дороже и не рекомендуются для покупки в обычные компьютеры.

Тип памяти: DDR4, DDR3 и DDR3L

Типы памяти отличаются по многим техническим характеристикам. Например, DDR4 работает на более высоких частотах и обладает лучшей энергоэффективностью. Об отличии DDR4 от DDR3 читайте здесь. Отмечу, что типы 3 и 4 поколения несовместимы.

Разница между DDR3 и DDR3L только в энергоэффективности. «L» — это сокращение от «Low». Память с таким маркером потребляет 1.35V, а обычная — 1.5V. Оба типа совместимы и могут использоваться в компьютере вместе. Более низкое энергопотребление не позволит сэкономить на электричестве, но обеспечит памяти чуть меньший нагрев.

Частота работы: 1333, 1600, 1866, 2133 МГц

Чем выше частота, тем лучше быстродействие. Но есть нюанс. Процессор имеет максимальный порог частоты, на которой он может взаимодействовать с оперативной памятью. Если в процессоре этот порог 1600 МГц, то покупка памяти с частотой 2133 МГц ничего не даст. Работать всё будет на частоте 1600 МГц.

Данную характеристику часто не указывают у процессоров и её следует искать на сайте производителя. Для примера приведу небольшой список максимальной частоты взаимодействия с ОЗУ для некоторых процессоров.

Серия процессора Max частота
Core i3
Core i3 8й серии 2400 МГц
Core i3 7й серии 2133/2400 МГц
Core i3 6й серии 2133 МГц
Core i3 4й серии 1600 МГц
Core i5
Core i5 7й серии 2400 МГц
Core i5 6й серии 2133 МГц
Core i5 4й серии 1600 МГц
Core i7
Core i7 7й серии 2666 МГц
Core i7 6й серии 2400 МГц
Core i7 4й серии 1600 МГц
AMD FX
AMD FX-4ххх 1866 МГц
AMD FX-6ххх 1866 МГц
AMD FX-8ххх 1866 МГц
AMD Ryzen
AMD Ryzen 3 1й серии 2666 МГц
AMD Ryzen 5 1й серии 2666 МГц
AMD Ryzen 7 1й серии 2933 МГц

Пиковая скорость передачи данных: PC10600, PC12800, PC19200

Максимальная скорость передачи данных зависит от частоты работы памяти и обозначается префиксом «PC». Далее идёт скорость, измеряемая в МБ/с. Чем больше скорость — тем лучше.

Частота Скорость
2400 МГц PC19200
2133 МГц PC17000
1866 МГц PC14900
1600 МГц PC12800
1333 МГц PC10600

Иногда встречается префикс «PC3» или «PC4», что указывает на конкретный тип памяти — DDR3 или DDR4.

В конце может добавляться буква, обозначающая стандарт планки. Например, «PC4-24000U» или «PC4-24000R».

Редко встречается «E» — ECC (error-correcting code) — память c коррекцией ошибок.

Тайминг: 8-8-8-24, CL11

Тайминг это задержка, которая происходит при обращении процессора к памяти. Обычно указывается в виде 4 чисел. Они описывают скорость чтения, записи и выполнения действия. Четвёртая указывает на полный цикл выполнения этих операций. Иногда указывают только скорость чтения — CL11 (CAS Latency 11).

Чем меньше задержки, тем лучше. Но архитектура современных процессоров подразумевает наличие большого кеша и он не часто обращается к оперативной памяти на прямую. Поэтому эти показатели не играют большой роли в быстродействии. Разницу между 8-8-8-24 и 17-17-17-42 практически нельзя заметить.

В маркировке тайминг может обозначаться буквой после частоты. Например, DDR4-2400T или DDR4-2666U.

Размещение чипов памяти: 1Rx8 и 2Rx8

В некоторых моделях памяти в маркировке присутствует обозначение 1Rx8 или 2Rx8. Это указание на схематическое расположение чипов на плате.

  • 1Rx8 — 8 чипов на одной стороне платы;
  • 2Rx8 — 16 чипов по 8 с каждой стороны.

В одном компьютере может использоваться память с разной организацией размещения чипов. На быстродействие это не влияет. Производитель просто решает как ему удобней разместить их на плате.

Радиаторы RAM

Работая на стандартном напряжении, оперативная память почти не греется – если не планируется ее разгон, нет необходимости выбирать планки с радиаторами. Однако, если вы планируете разгонять DDR4 память, и при этом повышать напряжение до 1.4 В и выше – стоит рассматривать модули с ними. Существенную роль играет и общая организация охлаждения в системном блоке.

ddr4 с радиаторами

Важно: Радиаторы увеличивают высоту модуля, из-за чего он может стать несовместимым с некоторыми моделями процессорных кулеров. Лучше заранее уточнить расстояние от нижней грани радиатора кулера до слотов оперативки.

Расшифровка маркировки Corsair

Маркировка оперативной памяти отличается от обозначений у других производителей. Разберем название «Corsair DDR4 CMU32GX4M4A2666C16R».

  • CM — это аббревиатура Corsair Memory;
  • U — серия;
  • 32G — общий объём памяти комплекта;
  • X4 — цифра указывает на тип памяти DDR4 (Х3 — DDR3);
  • M4 — количество планок, которые входя в комплект;
  • A2666 — частота работы оперативной памяти в мегагерцах;
  • C16 — тайминг считывания (16 тактов);
  • R — цвет радиатора, то есть красный (Red).

Развернутый вид: Vengeance 32GB (4 x 8GB) DDR4 DRAM 2666MHz C16 Memory Kit – Red [CMU32GX4M4A2666C16R].

Сколько нужно оперативной памяти

Объём памяти следует выбирать исходя из основного назначения компьютера. В игровых платформах должно быть минимум 8 ГБ. Это минимальные требования для большинства современных игр. Для интернета и офисных программ сегодня желательно иметь 8 ГБ. Если памяти меньше, то это может привести к задержкам при переключении между запущенными программами. Работать позволит, но без комфорта.

Назначение Объём памяти
Офисный ПК 4 — 8 Гб
Мультимедиа ПК 4 — 8 Гб
Игровой ПК 8 — 16 Гб

Объём

Тут вопрос такой, риторический. Сильно много это лишняя трата денег, а сильно мало это путь к тормозам. Этот параметр как наверно вы знаете измеряется в Гигабайтах (Гб). И влияет он на то, сколько процессов память сможет обрабатывать одновременно. Или сможет ли вообще обработать какой нибудь большой-тяжёлый процесс.

Каждая запущенная программа (процесс) занимает какое-то количество объёма оперативы. Также каждая вкладка в вашем браузере занимает отдельный кусочек ОЗУ. Понятное дело, что чем её больше — тем лучше. Но если у вас ограниченный бюджет, то лучше её подрасчитать.

Эта характеристика тоже влияет на скорость, но косвенно. Пример: если у вас 1 Гб быстрой DDR4 в 4000 МГц — то тормоза у вас будут жёсткие. Верно и обратное. Если у вас 16 Гб медленной 200 МГц — то тормоза будут тоже жёсткие. Опять таки важен баланс. Нужно опираться на свои потребности. Могу лишь дать некоторые рекомендации.

  • Если вы только лазаете на интернете, то вам хватит и 4 Гб. Ну может 5 в некоторых случаях.
  • Если интернет и игры в средних настройках то 8 Гб. В принципе это сейчас золотой минимум, которым комплектуются компы.
  • Вы пользуетесь ещё и довесом крутыми программами типа Фотошопа или Вегаса и играете в игры на высоких настройках — то 16 Гб.

Более 16-ти это уже запас, который вряд ли вы используете полностью. То есть память будет полупустая. Исключением к большим объёмам будет только то, что вы рисуете к примеру 3D модели. Но в принципе 16 хватит с головой. Это на момент 2021 года.

В любом случае, дополнительные плашки можно докупить потом, если вам не хватит. Если у вас много денег, то берите, как можно больше. У вас появится возможность создать дополнительный буст с помощью Ram диска. Ещё небольшое дополнение: сама Windows, или любая другая ОС съедает по дефолту какое-то количество памяти.

Добавить комментарий

Ваш адрес email не будет опубликован.